基于神经网络的光伏电池建模Word下载.docx

上传人:b****5 文档编号:8376802 上传时间:2023-05-11 格式:DOCX 页数:28 大小:510.87KB
下载 相关 举报
基于神经网络的光伏电池建模Word下载.docx_第1页
第1页 / 共28页
基于神经网络的光伏电池建模Word下载.docx_第2页
第2页 / 共28页
基于神经网络的光伏电池建模Word下载.docx_第3页
第3页 / 共28页
基于神经网络的光伏电池建模Word下载.docx_第4页
第4页 / 共28页
基于神经网络的光伏电池建模Word下载.docx_第5页
第5页 / 共28页
基于神经网络的光伏电池建模Word下载.docx_第6页
第6页 / 共28页
基于神经网络的光伏电池建模Word下载.docx_第7页
第7页 / 共28页
基于神经网络的光伏电池建模Word下载.docx_第8页
第8页 / 共28页
基于神经网络的光伏电池建模Word下载.docx_第9页
第9页 / 共28页
基于神经网络的光伏电池建模Word下载.docx_第10页
第10页 / 共28页
基于神经网络的光伏电池建模Word下载.docx_第11页
第11页 / 共28页
基于神经网络的光伏电池建模Word下载.docx_第12页
第12页 / 共28页
基于神经网络的光伏电池建模Word下载.docx_第13页
第13页 / 共28页
基于神经网络的光伏电池建模Word下载.docx_第14页
第14页 / 共28页
基于神经网络的光伏电池建模Word下载.docx_第15页
第15页 / 共28页
基于神经网络的光伏电池建模Word下载.docx_第16页
第16页 / 共28页
基于神经网络的光伏电池建模Word下载.docx_第17页
第17页 / 共28页
基于神经网络的光伏电池建模Word下载.docx_第18页
第18页 / 共28页
基于神经网络的光伏电池建模Word下载.docx_第19页
第19页 / 共28页
基于神经网络的光伏电池建模Word下载.docx_第20页
第20页 / 共28页
亲,该文档总共28页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

基于神经网络的光伏电池建模Word下载.docx

《基于神经网络的光伏电池建模Word下载.docx》由会员分享,可在线阅读,更多相关《基于神经网络的光伏电池建模Word下载.docx(28页珍藏版)》请在冰点文库上搜索。

基于神经网络的光伏电池建模Word下载.docx

摘要

由于光伏电池具有高度非线性特性,难以建模,而传统的数学模型难以满足光伏控制系统设计和应用的要求。

该文利用神经网络具有逼近任意复杂非线性函数的能力,将神经网络技术应用到光伏阵的建模中,避开了该模块内部的复杂性。

模型以太阳能日照、温度以及负载电压作为神经网络辨识模型的输入量,光伏阵输出电流为输出量,采用改进型BP算法,建立了光伏电池的动态响应模型,然后预测了最大功率点。

文中给出模型的结构,训练步骤和仿真结果。

仿真结果表明,方法可行,建立的模型精度较高,从而为设计光伏实时控制系统奠定了基础。

关键词:

光伏电池;

神经网络;

建模

ModelingofPhotovoltaic-ArrayBasedonImprovedBPNeuralNetworksIdentification

ABSTRACT

Fortheseriouscomplexityofphotovoltaicarray(PV),modelingofitisverydifficultandtheexistingmodelsaretoocomplicatedtobeappliedtodesigningandcontrollingthesystem,especiallytoonlinecontrolling.

Inthispaper,wetrytoestablishavoltageandcurrentmodelofPVarraybyusingneuralnetworksidentificationtechniques.Thetemperature,radiationandvoltageofthesolarcellsaretakenastheinputandthecurrentastheoutputoftheneuralnetworksmodel.Inthisway,wecanavoidtheinternalcomplexityofPVmodule.The595groupsexperimentaldataareused,andthestructureandthenovelBPalgorithmofneuralnetworksidentificationsystemaregiven.

Thevalidityandaccuracyofthemodelareprovedbythesimulationresults.Theneuralnetworksmodelingmakesitpossibletodesignon-linecontrollerofPVsystem.

KEYWORDS:

Photovoltaicarray;

Neuralnetwork;

Modeling

目录

第一章概述6

§

1.2.国内外同类设计(或同类研究)的概况综述7

0

图1 单个光伏电池等效电路0

1

图3 典型光伏电池V-I、P-V特性随温度变化曲线1

第三章光伏电池的数学模型2

3.1光伏电池的数学模型的建立2

总结26

参考文献27

致谢29

附录30

第一章概述

1.1设计(或研究)的依据与意义

太阳能可以不分地域地辐射到地球的每一个角落,从而成为21世纪最具大规模开发潜力的新能源之一。

在中国,太阳能资源较好的地区占国土面积2/3以上,主要集中在西部地区,尤其是西北和青藏高原,年平均日照时间在2200小时以上;

中国陆地每年接受的太阳辐射量约合24000亿吨标准煤。

太阳能的转换利用方式有光-热转换、光-电转换和光-化学转换等三种方式。

接收或聚集太阳能使之转换为热能,然后用于生产和生活的一些方面,是光-热转换即太阳能热利用的基本方式。

太阳能热水系统是目前太阳能热利用的主要形式,它是利用太阳能将水加热储于水箱中以便利用的装置。

利用光生伏打效应原理制成的光伏电池,可将太阳光能直接转换成电能加以利用,称为光电转换,即光伏发电。

光化学转变尚处于研究试验阶段,这种转换技术包括光伏电池电极化水制氢、利用氢氧化钙和金属氢化物热分解储能等。

光伏发电应用首先要解决的是怎样将太阳能转换为电能。

光伏电池就是利用半导体光伏效应制成,它是一种将太阳辐射能直接转换为电能的转换器件。

由若干个这种器件封装成光伏电池组件,再根据需要将若干个组件组合成一定功率的光伏阵列,并与储能、测量、控制等装置相配套,即构成光伏发电系统。

中国是世界上最大的发展中国家,人口众多,工业化任务远未完成。

国民经济建设的发展,人民生活水平的提高,社会各项事业的进步,必将对能源的供应提出更多、更高的要求。

中国光伏发电的需求量巨大,市场广阔。

各方面的预测表明,21世纪中叶太阳能将成为中国能源直接供应的一支主力军。

光伏发电已成为现实,并在全球范围内迅猛发展。

如果说石化能源是21世纪的能源主体,那么可以说以太阳能为主体的新能源将成为21世纪人类能源的主体,“掌握了未来的能源就掌握了人类未来的命运”,光伏发电的时代正在向我们走来!

1.§

1.2.国内外同类设计(或同类研究)的概况综述

当今世界各国尤其是发达国家对于光伏发电技术十分重视,针对其制定规划,增加投入,大力发展。

美国能源部于1990年开始启动光伏制造技术的产业化计划,通过国家可再生能源实验室实施,并成立了国家PV中心,与产业界、大学和研究机构联合进行研究,以大幅度降低光伏电池的生产成本。

这一计划的实施,已取得明显效果:

商品化晶体硅光伏电池组件的光电转化效率达到12%-14%;

生产规模从过去的1-5MWp/年发展到5-20MWp/年;

生产工艺不断简化,自动化程度不断提高。

在日本和欧盟各国,也有类似计划。

2000年以来,世界晶体硅光伏组件的生产成本降低了32%以上,达到3美元/Wp左右。

紧紧围绕降低光伏发电成本的各种研究开发工作一直在发达国家中紧张地进行,其中以晶体硅材料为基础的高校光伏电池和各种薄膜光伏电池为基础的研究工作是热点课题。

澳大利亚新南威尔士大学研制的高校单晶硅光伏电池效率已达24.7%,美国、日本和德国也达到了23%。

薄膜光伏电池的研究工作主要集中在非晶硅薄膜光伏电池、CdTe系光伏电池和多晶硅薄膜光伏电池等。

非晶硅薄膜光伏电池主要是通过双结和三结迭层光伏电池克服衰降和提高效率。

经过努力,已有许多新的突破,目前实验室效率已经超过10%。

CdTe系光伏电池效率已达到15.8%,CIS系光伏电池效率已达到17%,而且都已有了光伏电池效率约为10%的中试生产线。

多晶硅薄膜光伏电池的实验室效率已超过17%,成为世界关注的新热点。

美国、日本和俄罗斯等国均投入大量资金进行空间太阳能电站的研究试验,以期大规模利用太阳能为人类提供源源不断的电力,其前景十分诱人。

光伏发电与建筑相结合是目前世界上大规模利用光伏技术发电的研究开发热点,美国、日本和欧盟各国都在作为重点项目积极地进行,除在屋顶安装光伏电池外,已推出把光伏电池装在瓦片内的产品和光伏幕墙。

从20世纪70年代中后期开始,光伏技术得到不断地完善,成本不断降低,形成了不断发展的光伏技术产业,成为21世纪世界能源舞台上的主要成员之一。

第二章光伏电池特性

2.1光伏电池的电特性

2.1.1等效电路

光伏电池阵列由太阳电池串联和/或并联连接而成。

每一个电池本质上是一个P-N结,直接将光能转换成电能。

当太阳电池接上负载时,光生电流流经负载,并在负载两端建起端电压,这时太阳电池的工作情况可用图1所示的等效电路来描述

图1 单个光伏电池等效电路

其中,Iph为光生电流。

Iph値正比于光伏电池的面积和入射光的辐照度。

1cm光伏电池的Iph値均为16~30mA.Id为暗电流。

无光照下的光伏电池的基本行为特性就类似于一个普通二极管。

所谓暗电流指的是光伏电池在无光照时,由外电压作用下P-N结自身所能产生的总扩散电流的变化情况。

I为光伏电池输出的负载电流。

Rl为电池的外负载电阻。

Rs为串联电阻。

一般小于1欧。

它主要有电池的体电阻、表面电阻、电极导体电阻、电极与硅表面间接触电阻和金属导体电阻等组成。

Rsh为旁路电阻,一般为几千欧。

它主要是由电池表面污浊和半导体晶体缺陷引起的漏电流所对应的P-N结漏泄电阻和电池边缘的漏泄电阻等组成。

典型的光伏电池V-I、P-V特性如图2,图3所示。

图1表示I-V、P-V随太阳辐射变化而变化的规律。

图2表示V-I、P-V随环境温度变化的规律。

从V-I特性曲线上可以看出,太阳电池既非恒压源,也非恒流源,也不可能为负载提供任意大的功率,是一种高度非线性的直流电源。

在一定的太阳日照下,该曲线完全由电池的P-N结特性和电阻分散参数确定。

图2 典型光伏电池V-I、P-V特性随太阳辐射强度变化曲线

图3 典型光伏电池V-I、P-V特性随温度变化曲线

2.2光伏电池的外特性

光伏电池工作环境的多种外部因素,如光照强度/环境温度/粒子辐射等都会对电池的性能指标带来影响,而且温度的影响和光照强度的影响还常常同时存在.为了保证光伏电池具有较高的工作效率和较稳定的性能,其制造工艺、组合安装、以及在设计配套的控制系统时,都要考虑改善光伏电池外特性的问题。

 第三章光伏电池的数学模型

3.1光伏电池的数学模型的建立

光伏势能在本质上来说是存在于2种特殊物质之间的电子化学势能差(Fermilevel),当这2种物质结合在一起时,它们之间的结将达到一个新的热动力平衡,只有当这2种物质中的Fermilevel相等时,平衡才能达到。

为了获得高功率,需将许多的光伏电池串并联形成光伏模块直至光伏阵列。

光伏电池的I-U、P-U曲线是随光照强度、温度变化的非线性曲线。

光伏电池的等值电路模型一般有3种。

第1种是光伏电池的简单电路模型,不考虑任何电阻,该模型有利于理论研究,适宜于复杂的光伏发电系统仿真;

第2种方法是只考虑光伏电池并联电阻的模型,该模型精度稍高,在实际应用中并不常见;

第3种是既考虑并联电阻,又考虑串联电阻的较精确仿真模型,其等值电路模型如图1所示。

根据如图1所示的光伏电池等值电路模型,应用Kirchhoff电流定律,可得流过负载的电流I与其端口电压U之间的关系

其中:

Rs为光伏电池的内阻;

Rp为光伏电池的并联电阻。

一般来说,质量好的硅晶片lcm2Rs约在7.7~15.3mΩ之间,Rp在200至300Ω之间。

Io为流过二极管的反向饱和漏电流;

q为电荷量1.6×

10-19C;

K是Boltzmann常数,值为1.38×

10-23J/K;

T为光伏阵列的工作温度,单位为K;

A为二极管的理想常数,其值在1~2之间变化。

(1)是一超越方程,利用该式不可能求出负载电压U或电流I的显性表达式,常规方法是利用Newton迭代法求解。

应用表格法求解,即

这样,将Ud的一系列连续增加的值放入表格的第1栏中,对于每一个确定的Ud值,可以非常容易得到一系列的与Ud相对应的电流I值,可得电压

利用Ud的值进行巧妙过渡,避免了直接利用Newton迭代法求解,可得到I-U、P-U曲线。

在上述方程中,短路电流Isc与光照强度成正比,这样可以非常容易得到光伏阵列在一系列不同光照强度下所形成的I-U曲线。

当光伏电池模板的温度升高时,光伏电池的短路电流将增加,而开路电压则会下降,根据经验应用式(5)对光伏电池的温度效应进行建模,并设在标准参考温度时,短路电流为Is,开路电压为Uos,光伏模块的温度增加量为△T,有:

如典型的单晶硅,α为500μA/℃,β为5mV/℃。

因为增加的电流量小于减少的电压量,温度每上升1℃,所以光伏电池的功率损失约为0.45%。

综上所述,根据光伏电池的伏安特性曲线的分析,以及光伏电池的物理模型,建立其数学模型:

I=Iph-Io〔exp(qVj/nkT)-1〕-(V+IRs)/Rsh

当Rsh>

>

Rs时,I=Iph-Io[exp{q(V+IRs)/AKT}-1]

其中,Io=Ior{T/Tr}3exp{qEG/KA(1/Tr-1/T)}(3)

Iph={Iscr+ki(T-Tr)}λ/100(4)

在等式(4)中,相电流Iph与太阳日照λ成正比。

Io是反

相饱和电流,随温度T的变化而变化。

Rs是串联电阻。

Rsh是并

联电阻,表明电子穿过P-N结时产生的电流损失。

由于一个光伏阵通常由几组太阳电池串联和/或并联

连接而成,因此一个光伏阵等效的数学模型通常表示为:

I(1+Rs/Rsh)=npIph-npIo

[exp{q(V+IRs)/AKT}-1]-(V/ns+IRs)/Rsh(5)

其中,ns表示太阳电池串联的数目。

np为并联的数目。

光伏阵的输出功率是电流与终端电压的乘积,其数学表

达式为:

P=npIphV-npIo[exp{q(V+IRs)/AKT}-1]V-(V/ns+IRs)V/Rsh(6)

§

3.2数学模型的优缺点

通过基于外特性的光伏阵列模型的数学描述以及其对光复阵列的模拟效果来看,该模型具有以下的优缺点。

优点:

1模型基于光复阵列的外特性,模型较简单。

2参数不与光伏阵列的内部物理参数对应,常规电路仿真用户解读容易。

3模型参数与光伏阵列的内部物理参数的常规参数基本对应,参数求解容易。

4子电路接口简单,容易用于电路仿真。

缺点:

1不考虑光伏阵列物理本质,不能精确反映其物理特性。

2模型参数不与实际参数对应,仿真精度较低。

3对温度、光照等外围参数设定较困难。

虽然基于外特性的光伏阵列模型在仿真精度上存在着一定的不足,但其模型简单,容易理解,参数求解简单,基本反映了光复阵列的特性。

在仿真应用中,具有一定的使用价值。

第四章人工神经网络

人工神经网络是集脑科学、神经心理学和信息科学等多学科的交叉研究领域,是近年来高科技领域的一个研究热点。

它的研究目标是通过研究人脑的组成机理和思维方式,探索人类智能的奥秘,进而通过模拟人脑的结构和工作模式,使机器具有类似人类的智能。

它已在模式识别、机器学习、专家系统等多个方面得到应用,成为人工智能研究中的活跃领域。

本章将简要介绍神经网络基本的概念、模型以及学习算法。

图4.2人工神经网络的组成图4.3M-P神经元模型

而处理单元的输出为

式中,xi为第i个元素的输入,wi为第i个处理单元与本处理单元的互联权重。

f称为激发函数或作用函数,它决定节点(神经元)的输出。

激发函数一般具有非线性特性,常用的非线性激发函数如图所示这里,

图常用的激发函数:

(a)阈值型(b)分段线性型(c)Sigmoid函数型(d)双曲正切型

•阈值型函数又称阶跃函数,它表示激活值σ和其输出f(σ)之间的关系。

阈值型函数为激发函数的神经元是一种最简单的人工神经元,也就是我们前面提到的M-P模型。

•线性分段函数可以看作是一种最简单的非线性函数,它的特点是将函数的值域限制在一定的范围内,其输入、输出之间在一定范围内满足线性关系,一直延续到输出为最大域值为止。

但当达到最大值后,输出就不再增大。

•S型函数是一个有最大输出值的非线性函数,其输出值是在某个范围内连续取值的。

以它为激发函数的神经元也具有饱和特性。

•双曲正切型函数实际只是一种特殊的S型函数,其饱和值是-1和1。

3.人工神经网络的结构

人工神经网络中,各神经元的不同连接方式就构成了网络的不同连接模型。

常见的连接模型有:

•前向网络。

•从输入层到输出层有反馈的网络。

•层内有互联的网络。

•互联网络。

4.人工神经网络的分类及其主要特征

•分类

✓按性能分:

连续型和离散型网络,或确定型和随机型网络。

✓按拓扑结构分:

有反馈网络和无反馈网络。

✓按学习方法分:

有教师的学习网络和无教师的学习网络。

✓按连接突触性质分:

一阶线性关联网络和高阶非线性关联网络。

•人工神经网络具有以下主要特征:

(1)能较好的模拟人的形象思维。

(2)具有大规模并行协同处理能力。

(3)具有较强的学习能力。

(4)具有较强的容错能力和联想能力。

(5)是一个大规模自组织、自适应的非线性动力系统。

•4.1.3人工神经网络研究的兴起与发展

•人工神经网络的研究经历了不少的曲折,大体上可分为四个阶段:

✓产生时期(20世纪50年代中期之前)

✓高潮时期(20世纪50年代中期到20世纪60年代末期)

✓低潮时期(20世纪60年代末到20世纪80年代初期)

✓蓬勃发展时期(20世纪80年代以后)

4.2感知器模型及其学习算法

•4.2.1感知器模型

•感知器模型是美国学者罗森勃拉特(Rosenblatt)为研究大脑的存储、学习和认知过程而提出的一类具有自学习能力的神经网络模型,它把神经网络的研究从纯理论探讨引向了从工程上的实现。

•Rosenblatt提出的感知器模型是一个只有单层计算单元的前向神经网络,称为单层感知器。

•教材中图9.5所示的即为一个单层感知器模型。

•4.2.2单层感知器模型的学习算法

•算法思想:

首先把连接权和阈值初始化为较小的非零随机数,然后把有n个连接权值的输入送入网络,经加权运算处理,得到的输出如果与所期望的输出有较大的差别,就对连接权值参数按照某种算法进行自动调整,经过多次反复,直到所得到的输出与所期望的输出间的差别满足要求为止。

•为简单起见,仅考虑只有一个输出的简单情况。

设xi(t)是时刻t感知器的输入(i=1,2,......,n),ωi(t)是相应的连接权值,y(t)是实际的输出,d(t)是所期望的输出,且感知器的输出或者为1,或者为0.

•4.2.3线性不可分问题

•单层感知器不能表达的问题被称为线性不可分问题。

1969年,明斯基证明了“异或”问题是线性不可分问题:

“异或”(XOR)运算的定义如下:

由于单层感知器的输出为

y(x1,x2)=f(ω1×

x1+ω2×

x2-θ)

所以,用感知器实现简单逻辑运算的情况如下:

(1)“与”运算(x1∧x2)

令ω1=ω2=1,θ=2,则

y=f(1×

x1+1×

x2-2)

显然,当x1和x2均为1时,y的值1;

而当x1和x2有一个为0时,y的值就为0。

(2)“或”运算(x1∨x2)

令ω1=ω2=1,θ=0.5

x2-0.5)

显然,只要x1和x2中有一个为1,则y的值就为1;

只有当x1和x2都为0时,y的值才为0。

(3)“非”运算(~X1)

令ω1=-1,ω2=O,θ=-0.5,则

y=f((-1)×

x2+0.5))

显然,无论x2为何值,x1为1时,y的值都为0;

x1为O时,y的值为1。

即y总等于~x1。

(4)“异或”运算(x1XORx2)

如果“异或”(XOR)问题能用单层感知器解决,则由XOR的真值表9-1可知,ω1、ω2和θ必须满足如下方程组:

ω1+ω2-θ<0

ω1+0-θ≥0

0+0-θ<0

0+ω2-θ≥0

显然,该方程组是无解,这就说明单层感知器是无法解决异或问题的。

异或问题是一个只有两个输入和一个输出,且输入输出都只取1和0两个值的问题,分析起来比较简单。

对于比较复杂的多输入变量函数来说,到底有多少是线性可分的?

多少是线性不可分的呢?

相关研究表明,线性不可分函数的数量随着输入变量个数的增加而快速增加,甚至远远超过了线性可分函数的个数。

也就是说,单层感知器不能表达的问题的数量远远超过了它所能表达的问题的数量。

这也难怪当Minsky给出单层感知器的这一致命缺陷时,会使人工神经网络的研究跌入漫长的黑暗期。

•4.2.4多层感知器

在单层感知器的输入部分和输出层之间加入一层或多层处理单元,就构成了二层或多层感知器。

在多层感知器模型中,只允许某一层的连接权值可调,这是因为无法知道网络隐层的神经元的理想输出,因而难以给出一个有效的多层感知器学习算法。

多层感知器克服了单层感知器的许多缺点,原来一些单层感知器无法解决的问题,在多层感知器中就可以解决。

例如,应用二层感知器就可以解决异或逻辑运算问题.

4.3.1反向传播模型及其网络结构

反向传播模型也称B-P模型,是一种用于前向多层的反向传播学习算法。

之所以称它是一种学习方法,是因为用它可以对组成前向多层网络的各人工神经元之间的连接权值进行不断的修改,从而使该前向多层网络能够将输入它的信息变换成所期望的输出信息。

之所以将其称作为反向学习算法,是因为在修改各人工神经元的连接权值时,所依据的是该网络的实际输出与其期望的输出之差,将这一差值反向一层一层的向回传播,来决定连接权值的修改。

B-P算法的网络结构是一个前向多层网络,如图所示。

4.3.2反向传播网络的学习算法

B-P算法的学习目的是对网络的连接权值进行调

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 表格模板 > 书信模板

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2