Heat Chap13095.docx

上传人:b****0 文档编号:9179265 上传时间:2023-05-17 格式:DOCX 页数:23 大小:465.83KB
下载 相关 举报
Heat Chap13095.docx_第1页
第1页 / 共23页
Heat Chap13095.docx_第2页
第2页 / 共23页
Heat Chap13095.docx_第3页
第3页 / 共23页
Heat Chap13095.docx_第4页
第4页 / 共23页
Heat Chap13095.docx_第5页
第5页 / 共23页
Heat Chap13095.docx_第6页
第6页 / 共23页
Heat Chap13095.docx_第7页
第7页 / 共23页
Heat Chap13095.docx_第8页
第8页 / 共23页
Heat Chap13095.docx_第9页
第9页 / 共23页
Heat Chap13095.docx_第10页
第10页 / 共23页
Heat Chap13095.docx_第11页
第11页 / 共23页
Heat Chap13095.docx_第12页
第12页 / 共23页
Heat Chap13095.docx_第13页
第13页 / 共23页
Heat Chap13095.docx_第14页
第14页 / 共23页
Heat Chap13095.docx_第15页
第15页 / 共23页
Heat Chap13095.docx_第16页
第16页 / 共23页
Heat Chap13095.docx_第17页
第17页 / 共23页
Heat Chap13095.docx_第18页
第18页 / 共23页
Heat Chap13095.docx_第19页
第19页 / 共23页
Heat Chap13095.docx_第20页
第20页 / 共23页
亲,该文档总共23页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

Heat Chap13095.docx

《Heat Chap13095.docx》由会员分享,可在线阅读,更多相关《Heat Chap13095.docx(23页珍藏版)》请在冰点文库上搜索。

Heat Chap13095.docx

HeatChap13095

13-95Coldwaterisheatedbyhotwaterinaheatexchanger.Thenetrateofheattransferandtheheattransfersurfaceareaoftheheatexchangeraretobedetermined.

Assumptions1Steadyoperatingconditionsexist.2Theheatexchangeriswell-insulatedsothatheatlosstothesurroundingsisnegligibleandthusheattransferfromthehotfluidisequaltotheheattransfertothecoldfluid.3Changesinthekineticandpotentialenergiesoffluidstreamsarenegligible.4Theoverallheattransfercoefficientisconstantanduniform.5Thethicknessofthetubeisnegligible.

PropertiesThespecificheatsofthecoldandhotwateraregiventobe4.18and4.19kJ/kg.C,respectively.

AnalysisTheheatcapacityratesofthehotandcoldfluidsare

Therefore,

and

Thenthemaximumheattransferratebecomes

Theactualrateofheattransferis

Thentheeffectivenessofthisheatexchangerbecomes

TheNTUofthisheatexchangerisdeterminedusingtherelationinTable13-5tobe

Thenthesurfaceareaoftheheatexchangerisdeterminedfrom

 

13-96"!

PROBLEM13-96"

"GIVEN"

T_cw_in=15"[C]"

T_cw_out=45"[C]"

m_dot_cw=0.25"[kg/s]"

C_p_cw=4.18"[kJ/kg-C]"

T_hw_in=100"[C],parametertobevaried"

m_dot_hw=3"[kg/s]"

C_p_hw=4.19"[kJ/kg-C]"

"U=0.95[kW/m^2-C],parametertobevaried"

"ANALYSIS"

"WithEES,itiseasiertosolvethisproblemusingLMTDmethodthanNTUmethod.Below,weuseLMTDmethod.Bothmethodsgivethesameresults."

DELTAT_1=T_hw_in-T_cw_out

DELTAT_2=T_hw_out-T_cw_in

DELTAT_lm=(DELTAT_1-DELTAT_2)/ln(DELTAT_1/DELTAT_2)

Q_dot=U*A*DELTAT_lm

Q_dot=m_dot_hw*C_p_hw*(T_hw_in-T_hw_out)

Q_dot=m_dot_cw*C_p_cw*(T_cw_out-T_cw_in)

Thw,in[C]

Q[kW]

A[m2]

60

31.35

1.25

65

31.35

1.038

70

31.35

0.8903

75

31.35

0.7807

80

31.35

0.6957

85

31.35

0.6279

90

31.35

0.5723

95

31.35

0.5259

100

31.35

0.4865

105

31.35

0.4527

110

31.35

0.4234

115

31.35

0.3976

120

31.35

0.3748

 

U[kW/m2-C]

Q[kW]

A[m2]

0.75

31.35

0.6163

0.8

31.35

0.5778

0.85

31.35

0.5438

0.9

31.35

0.5136

0.95

31.35

0.4865

1

31.35

0.4622

1.05

31.35

0.4402

1.1

31.35

0.4202

1.15

31.35

0.4019

1.2

31.35

0.3852

1.25

31.35

0.3698

 

13-97Glycerinisheatedbyethyleneglycolinaheatexchanger.Massflowratesandinlettemperaturesaregiven.Therateofheattransferandtheoutlettemperaturesaretobedetermined.

Assumptions1Steadyoperatingconditionsexist.2Theheatexchangeriswell-insulatedsothatheatlosstothesurroundingsisnegligibleandthusheattransferfromthehotfluidisequaltotheheattransfertothecoldfluid.3Changesinthekineticandpotentialenergiesoffluidstreamsarenegligible.4Theoverallheattransfercoefficientisconstantanduniform.5Thethicknessofthetubeisnegligible.

PropertiesThespecificheatsoftheglycerinandethyleneglycolaregiventobe2.4and2.5kJ/kg.C,respectively.

Analysis(a)Theheatcapacityratesofthehotandcoldfluidsare

Therefore,

and

Thenthemaximumheattransferratebecomes

TheNTUofthisheatexchangeris

EffectivenessofthisheatexchangercorrespondingtoC=0.96andNTU=2.797isdeterminedusingtheproperrelationinTable13-4

Thentheactualrateofheattransferbecomes

(b)Finally,theoutlettemperaturesofthecoldandthehotfluidstreamsaredeterminedfrom

13-98Waterisheatedbyhotairinacross-flowheatexchanger.Massflowratesandinlettemperaturesaregiven.Therateofheattransferandtheoutlettemperaturesaretobedetermined.

Assumptions1Steadyoperatingconditionsexist.2Theheatexchangeriswell-insulatedsothatheatlosstothesurroundingsisnegligibleandthusheattransferfromthehotfluidisequaltotheheattransfertothecoldfluid.3Changesinthekineticandpotentialenergiesoffluidstreamsarenegligible.4Theoverallheattransfercoefficientisconstantanduniform.5Thethicknessofthetubeisnegligible.

PropertiesThespecificheatsofthewaterandairaregiventobe4.18and1.01kJ/kg.C,respectively.

AnalysisThemassflowratesofthehotandthecoldfluidsare

Theheattransfersurfaceareaandtheheatcapacityratesare

Therefore,

and

TheNTUofthisheatexchangeris

Notingthatthisheatexchangerinvolvesmixedcross-flow,thefluidwith

ismixed,

unmixed,effectivenessofthisheatexchangercorrespondingtoC=0.2794andNTU=0.02967isdeterminedusingtheproperrelationinTable13-4tobe

Thentheactualrateofheattransferbecomes

Finally,theoutlettemperaturesofthecoldandthehotfluidstreamsaredeterminedfrom

13-99Ethylalcoholisheatedbywaterinashell-and-tubeheatexchanger.TheheattransfersurfaceareaoftheheatexchangeristobedeterminedusingboththeLMTDandNTUmethods.

Assumptions1Steadyoperatingconditionsexist.2Theheatexchangeriswell-insulatedsothatheatlosstothesurroundingsisnegligibleandthusheattransferfromthehotfluidisequaltotheheattransfertothecoldfluid.3Changesinthekineticandpotentialenergiesoffluidstreamsarenegligible.4Theoverallheattransfercoefficientisconstantanduniform.

PropertiesThespecificheatsoftheethylalcoholandwateraregiventobe2.67and4.19kJ/kg.C,respectively.

Analysis(a)Thetemperaturedifferencesbetweenthetwofluidsatthetwoendsoftheheatexchangerare

Thelogarithmicmeantemperaturedifferenceandthecorrectionfactorare

Therateofheattransferisdeterminedfrom

Thesurfaceareaofheattransferis

(b)Therateofheattransferis

Themassflowrateofthehotfluidis

Theheatcapacityratesofthehotandthecoldfluidsare

Therefore,

and

Thenthemaximumheattransferratebecomes

Theeffectivenessofthisheatexchangeris

TheNTUofthisheatexchangercorrespondingtothisemissivityandC=0.78isdeterminedfromFig.13-26dtobeNTU=1.7.Thenthesurfaceareaofheatexchangerisdeterminedtobe

Thesmalldifferencebetweenthetworesultsisduetothereadingerrorofthechart.

13-100Steamiscondensedbycoolingwaterinashell-and-tubeheatexchanger.Therateofheattransferandtherateofcondensationofsteamaretobedetermined.

Assumptions1Steadyoperatingconditionsexist.2Theheatexchangeriswell-insulatedsothatheatlosstothesurroundingsisnegligibleandthusheattransferfromthehotfluidisequaltotheheattransfertothecoldfluid.3Changesinthekineticandpotentialenergiesoffluidstreamsarenegligible.4Theoverallheattransfercoefficientisconstantanduniform.5Thethicknessofthetubeisnegligible.

PropertiesThespecificheatofthewaterisgiventobe4.18kJ/kg.C.Theheatofcondensationofsteamat30Cisgiventobe2430kJ/kg.

Analysis(a)Theheatcapacityrateofafluidcondensinginaheatexchangerisinfinity.Therefore,

andC=0

Thenthemaximumheattransferratebecomes

and

TheNTUofthisheatexchanger

ThentheeffectivenessofthisheatexchangercorrespondingtoC=0andNTU=6.76isdeterminedusingtheproperrelationinTable13-5

Thentheactualheattransferratebecomes

(b)Finally,therateofcondensationofthesteamisdeterminedfrom

 

13-101"!

PROBLEM13-101"

"GIVEN"

N_pass=8

N_tube=50

T_steam=30"[C],parametertobevaried"

h_fg_steam=2430"[kJ/kg]"

T_w_in=15"[C]"

m_dot_w=1800/Convert(kg/s,kg/h)"[kg/s]"

C_p_w=4.18"[kJ/kg-C]"

D=1.5"[cm],parametertobevaried"

L=2"[m]"

U=3"[kW/m^2-C]"

"ANALYSIS"

"WithEES,itiseasiertosolvethisproblemusingLMTDmethodthanNTUmethod.Below,weuseNTUmethod.Bothmethodsgivethesameresults."

"(a)"

C_min=m_dot_w*C_p_w

C=0"sincetheheatcapacityrateofafluidcondensingisinfinity"

Q_dot_max=C_min*(T_steam-T_w_in)

A=N_pass*N_tube*pi*D*L*Convert(cm,m)

NTU=(U*A)/C_min

epsilon=1-exp(-NTU)"fromTable13-4ofthetextwithC=0"

Q_dot=epsilon*Q_dot_max

"(b)"

Q_dot=m_dot_cond*h_fg_steam

Tsteam[C]

Q[kW]

mcond[kg/s]

20

10.45

0.0043

22.5

15.68

0.006451

25

20.9

0.008601

27.5

26.12

0.01075

30

31.35

0.0129

32.5

36.58

0.01505

35

41.8

0.0172

37.5

47.03

0.01935

40

52.25

0.0215

42.5

57.47

0.02365

45

62.7

0.0258

47.5

67.93

0.02795

50

73.15

0.0301

52.5

78.38

0.03225

55

83.6

0.0344

57.5

88.82

0.03655

60

94.05

0.0387

62.5

99.27

0.04085

65

104.5

0.043

67.5

109.7

0.04515

70

114.9

0.0473

D[cm]

Q[kW]

mcond[kg/s]

1

31.35

0.0129

1.05

31.35

0.0129

1.1

31.35

0.0129

1.15

31.35

0.0129

1.2

31.35

0.0129

1.25

31.35

0.0129

1.3

31.35

0.0129

1.35

31.35

0.0129

1.4

31.35

0.0129

1.45

31.35

0.0129

1.5

31.35

0.0129

1.55

31.35

0.0129

1.6

31.35

0.0129

1.65

31.35

0.0129

1.7

31.35

0.0129

1.75

31.35

0.0129

1.8

31.35

0.0129

1.85

31.35

0.0129

1.9

31.35

0.0129

1.95

31.35

0.0129

2

31.35

0.0129

 

 

13-102Coldwaterisheatedbyhotoilinashell-and-tubeheatexchanger.TherateofheattransferistobedeterminedusingboththeLMTDandNTUmethods.

Assumptions1Steadyoperatingconditionsexist.2Theheatexchangeriswell-insulatedsothatheatlosstothesurroundingsisnegligibleandthusheattransferfromthehotfluidisequaltotheheattransfertothecoldfluid.3Changesinthekineticandpotentialenergiesoffluidstreamsarenegligible.4Theoverallheattransfercoefficientisconstantanduniform.

PropertiesThespecificheatsofthewaterandoilaregiventobe4.18and2.2kJ/kg.C,respectively.

Analysis(a)TheLMTDmethodinthiscaseinvolvesiterations,whichinvolvesthefollowingsteps:

1)Choose

2)Calculate

from

3)

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > IT计算机 > 电脑基础知识

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2