淀粉接枝共聚物在纺织品中的应用Word文件下载.docx

上传人:b****1 文档编号:931509 上传时间:2023-04-29 格式:DOCX 页数:18 大小:951.29KB
下载 相关 举报
淀粉接枝共聚物在纺织品中的应用Word文件下载.docx_第1页
第1页 / 共18页
淀粉接枝共聚物在纺织品中的应用Word文件下载.docx_第2页
第2页 / 共18页
淀粉接枝共聚物在纺织品中的应用Word文件下载.docx_第3页
第3页 / 共18页
淀粉接枝共聚物在纺织品中的应用Word文件下载.docx_第4页
第4页 / 共18页
淀粉接枝共聚物在纺织品中的应用Word文件下载.docx_第5页
第5页 / 共18页
淀粉接枝共聚物在纺织品中的应用Word文件下载.docx_第6页
第6页 / 共18页
淀粉接枝共聚物在纺织品中的应用Word文件下载.docx_第7页
第7页 / 共18页
淀粉接枝共聚物在纺织品中的应用Word文件下载.docx_第8页
第8页 / 共18页
淀粉接枝共聚物在纺织品中的应用Word文件下载.docx_第9页
第9页 / 共18页
淀粉接枝共聚物在纺织品中的应用Word文件下载.docx_第10页
第10页 / 共18页
淀粉接枝共聚物在纺织品中的应用Word文件下载.docx_第11页
第11页 / 共18页
淀粉接枝共聚物在纺织品中的应用Word文件下载.docx_第12页
第12页 / 共18页
淀粉接枝共聚物在纺织品中的应用Word文件下载.docx_第13页
第13页 / 共18页
淀粉接枝共聚物在纺织品中的应用Word文件下载.docx_第14页
第14页 / 共18页
淀粉接枝共聚物在纺织品中的应用Word文件下载.docx_第15页
第15页 / 共18页
淀粉接枝共聚物在纺织品中的应用Word文件下载.docx_第16页
第16页 / 共18页
淀粉接枝共聚物在纺织品中的应用Word文件下载.docx_第17页
第17页 / 共18页
淀粉接枝共聚物在纺织品中的应用Word文件下载.docx_第18页
第18页 / 共18页
亲,该文档总共18页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

淀粉接枝共聚物在纺织品中的应用Word文件下载.docx

《淀粉接枝共聚物在纺织品中的应用Word文件下载.docx》由会员分享,可在线阅读,更多相关《淀粉接枝共聚物在纺织品中的应用Word文件下载.docx(18页珍藏版)》请在冰点文库上搜索。

淀粉接枝共聚物在纺织品中的应用Word文件下载.docx

在另一种方法的淀粉接枝共聚物被自然捣碎引发在淀粉主干产生的自由基以便接枝聚丙烯酰胺的合成和共基质可以通过反应挤出法制备。

Taghizadeh和Khosravy在2003年已经研究了动力学的机理、接枝被还原引发体系。

还有其他一些报告中的特定的合成,接枝共聚物表征及稳定。

此外,接枝淀粉乳液可以被用作在产品的最终制定原淀粉颗粒上。

因此,从上述讨论和可利用的文献,可以这样说,在大多数情况下,最好的选择是氧化还原系统启动的聚合反应。

淀粉的接枝单体采用单系统已被广泛研究,但是,两个或多个单体组合为接枝淀粉的使用受到很少的重视。

目前的研究工作中,接枝共聚的引发通过化学法在亚铁离子氧化还原系统中使用苯乙烯,甲基丙烯酸甲酯,丙烯酸丁酯。

在单体的比例上看到不同的接枝效率的效果,接枝率和其物理化学性质。

淀粉接枝共聚乳液被用作制造原淀粉自由流动的颗粒粘合剂。

自由流动的淀粉颗粒在流化床干燥机上干燥到所需的水分含量。

本研究的目的是发展提高淀粉接枝共聚苯乙烯/甲基丙烯酸甲酯和苯乙烯/丙烯酸丁酯的反应条件,研究了接枝率,拉伸强度,流变性能及其在纺织工业中的应用。

2材料与方法

2.1淀粉

酸变性淀粉在M/s.S.A.公司,医药化工列兵有限公司,印度的孟买被用作是标准的。

淀粉具有一个固有的粘度,在25℃测量是0.46dl/g。

2.2单体

市场上可利用的有甲基丙烯酸甲酯(MMA),丙烯酸丁酯(BA)和苯乙烯(ST)。

聚合前,单体通过洗涤去除它们的抑制剂。

单体先用饱和5%(w/v)NaHSO3溶液洗涤,然后用5%(w/v)NaOH溶液,而商业级的苯乙烯单体是用15%(w/v)KOH溶液去除抑制剂。

用化学药剂处理的单体被进一步用蒸馏水和去离子水清洗,直到水变成中性为止。

2.3其他试剂

硫酸亚铁铵[Fe(NH4)2·

(SO4)2·

6H2O](FAS),双氧水(H2O230%w/v),氢氧化钠(NaOH),氢氧化钾(KOH)是分析成等级的。

2.4接枝聚合过程

在一个特有的步骤中,淀粉通过在配有温度计、搅拌器和回流冷凝器的反应器中加热到75~80℃的水中(5%w/v)糊化。

糊化淀粉然后冷却到60℃的反应温度。

含氮空气保持在反应器中来净化在反应器中氮气。

硫酸亚铁铵随后加入到反应器中遵循单体的增加物。

此外,过氧化氢被添加到引发聚合反应。

该反应进行了2小时60℃恒温浴为时保持在450转搅拌。

对于42%的单体淀粉率至58%淀粉比重的单体由苯乙烯/甲基丙烯酸甲酯和ST/BA的比例80/20,50/50和20/80的比重来用。

在反应结束时,烧瓶中的容积被添加到乙醇和沉淀是允许的形式,由淀粉接枝共聚物和甲基丙烯酸甲酯/丙烯酸丁酯和苯乙烯的均聚物组成。

这个沉淀是过滤和在60℃烘箱干燥至恒重来实现。

单体转化率由淀粉产品的重量增加来计算。

这个polyMMA,polyST和polyBA在干燥的聚合物产品是采用索氏提取分离用氯仿紧随其后每12小时乙烯基氧化物。

百分比转换(PC),接枝效率(GE),接枝率(GY)和接枝率(GP)使用下列公式计算:

其中w1的是聚合物形成重量(克),w2是采取单体重量(克),w3是嫁接的聚合物重量(克),w4是采取淀粉重量(克),w5是淀粉接枝聚合物重量(克)

2.5表观粘度

对样品的表观粘度的测量在28℃用带有圆锥体和金属片(35/2度角)集合器的HaakeRotoviscoRT-10。

接枝淀粉乳液等为接枝淀粉颗粒(以下简称为GSG)5%w/v溶液是粘度测量的准备。

2.6拉伸强度

拉伸强度和断裂伸长率在普通的测量机器上(模型:

H5KS,Tinius-Olsen)根据ASTM程序D-2256测量。

棉纱是由浸在熟的原淀粉和改性GSG淀粉溶液(5%w/v)5分钟和在100℃的烘箱干燥3分钟来排列。

2.7溶出率

这个溶出率测定溶解已知数量的颗粒在水中溶出率设备使用。

其溶液温度保持在60℃,搅拌转速为100转。

对样品进行了每30秒采集和用浊度计对样品的浊度进行测量(型号:

965-IR,Orbeco-Hellige,美国)。

2.8傅里叶变换红外光谱(FTIR)分析

傅里叶变换红外光谱的淀粉和接枝共聚物红外光谱仪上使用溴化钾微丸记录(型号:

BomemHartman&

BraunMB-系列,德国)。

3结果和讨论

3.1接枝机理

铁离子在聚合生产中存在的根据在反应阐明的反应机制生产自由基(i),如下所示。

如反应(ii)所示,自由基产生预胶凝淀粉通过直接从预胶凝淀粉分子提取氢原子微自由基。

如反应(iii)所显示,在苯乙烯单体/甲基丙烯酸甲酯的存在中,预胶化淀粉激进添加到双键的单体,进入淀粉与基础的产物单体共价键形成了对单体即链引发。

在目前的情况下,两种不同的单体,这将附上随机增长的链条,如图反应(iv)、(v)。

这样,该聚合反应的传播会发生。

最后,如反应(vi)和(vii)所显示,不断增长的接枝链终止时伴随着开端,耦合或化合反应。

3.2单体比例的影响

单体接枝率可能会影响接枝效率(GE)以及接枝率(GP)。

在下面的研究中,单体范围在80/20,50/50和20/80的重量部分不同浓度的影响进行了讨论。

图1显示单体比例(ST/MMA)对GE和GP的变化的影响。

可以看出,在ST/MMA系统的情况下,GE增加与在ST的增量到MMA的比率。

然而,GP最初增加,此后随ST的进一步增加而减少,MMA浓度比下降。

表1显示了对单体转化率和接枝率,单体比的影响。

与其他比率50/50或20/80比较,在苯乙烯80/20比率和MMA或者BA,发现单体转换最少。

图2在ST/BA系统的情况下显示单体比例的变化的作用。

这表明,随着ST/MMA的比例不断增加,GE和GP都下降,与ST/MMA的系统比较,ST/BA系统具有更高的GE和GP。

图1影响单体的接枝率和接枝效率为ST/MMA的浓度。

GP(□),GE(×

在50/50的ST/MMA或ST/BA的情况下,聚合物转换率最大如表1所显示。

在20/80比例的ST/BA给了可比较的聚合物转换,这是比ST/MMA有类似成分高。

如表1所显示,可看出接枝率在112-137范围内变化。

由于高的反应的速率,在50/50的比率的情况下,ST/BA的高分子实现了转换。

由于同样的原因,ST/BA系统接枝效率也比ST/MMA系统高。

图2影响单体的接枝率和接枝效率为ST/BA系统的浓度。

GE(□),GP(×

)。

表1

单体浓度的影响对PC和GY

接枝淀粉颗粒

聚合物转换(PC)%

接枝率(GY)%

ST/MMA比例

80/20

46.87

114.62

50/50

80.55

120

20/80

59.39

112.21

ST/BA比例

57.78

120.624

89.71

135.94

87.36

137.20

3.3引发剂浓度的影响

如图3和表2.所显示,对GP、GE、PC和GY引发剂浓度变化的影响得到了一个给定的单体浓度比和反应时间,过氧化氢浓度从50到150mM。

从图中,可看出过氧化氢的接枝反应的最佳浓度是100mM。

羟基可以再结合在它们之中或与其他重组;

,如反应机制(vi)所示,他们导致均聚合或可以停止生长链子的传播。

此外,高浓度引发剂产生更多自由基,这些引发剂可能参加生长链基础终止并且启动均聚合。

图3.过氧化氢含量对接枝含量和接枝百分比的影响。

GE(□),GP(×

)(ST/MMA50/50比率和反应

表2

过氧化氢含量对在ST/MMA系统中PC和GY的影响

引发剂浓度(mM)

50

100

150

聚合物转换

14.98

62.5

接枝率

103.4

106.85

3.4淀粉含量的影响

如图4和表三所示,淀粉含量对GP,GE,PC和GY的影响。

结果通过淀粉在特定单体含量(ST/MMA)和时间内3%和7%w/v之间变化得到。

接枝百分比增加随着淀粉含量的增量并且接近渐近值为7%w/v的淀粉含量的36%。

图4.淀粉含量对百分比嫁接和接枝百分比的影响。

表3

淀粉含量对PC和GY的影响

淀粉含量,%w/v

3

5

7

聚合物转化

55.24

95.76

110

121

3.5淀粉的粒化和干燥

原淀粉的成粒作用通过增加接枝淀粉到原淀粉上完成。

这样做,预计会提高流动性和原淀粉的物理力学性质,淀粉的成粒在一个快速搅拌造粒机上完成,通过喷洒出不同的接枝乳液(粘合剂溶液)的在原淀粉上的接枝淀粉实现。

接枝淀粉颗粒(GSG)在流化床干燥机上干燥。

空气干燥速度和温度维持在1.2m/s和60℃,独自地在流化床干燥机。

已知数量的样品是用筛子回转抖掉来筛分。

在每个筛残余颗粒重测确定粒度分布,平均粒径(D50)。

如图5所示,在高粘合剂浓度,粒度分布比低浓度的粘合剂层面更广阔,平均粒子大小为10%w/w粘合剂浓度为290um和为16.67%和23.72%w/w粘合剂浓度的平均粒径大约为360um。

图6显示了随着时间水分的流失和干燥粘合剂的初始浓度需要性的损失率。

干燥动力学数据拟合采用网页模型方程。

MR=exp[-(0.0044×

C2-0.1846×

C+1.9597)×

t(-0.0038×

C2+0.1739×

C-0.8506)](5)

其中,

C是粘合剂(wt%)的浓度,t是时间(分钟),Xt是在任何时候水分含量(kg/kg),X0是初始水分含量(kg/kg),Xe是平衡水分含量(kg/kg)。

结果发现,该网页模式适合在干燥的数据最好在±

15%内。

为了干燥的GSG水分含量的0.04kg/kg(干燥部分),所需时间在20-25分钟范围内。

图5.GSG在粒化以后和黏合剂集中的流化床干燥的粒度分布10%(×

),16.67%(□)和23.72%(Δ)(w/w)。

3.6物理力学性能

表4表明GSG的流动能力决定于休止角和对应的容积密度。

根据ISO5311–1992,能被看见粒子是流动自然(休止角≈38°

)有容积密度在450–500kg/m3范围内。

图6.ST/MMA系统GSG的含水曲线。

实验性点:

16.67%(□),23.72%(Δ),10%(×

),从Eq。

(5)(−)。

表4

接枝淀粉粒子的休止角和容积密度数据

系统

按重量比

休止角(°

容积密度(kg/m3)

ST/MMA

457.35

37.65

485.66

482.83

ST/BA

460.53

38.65

419.40

504.98

3.7接枝的证据

如图7-9所示的红外光谱纯淀粉和接枝淀粉。

接枝淀粉的光谱显示淀粉的典型吸收在3000–3800cm-1由OH舒展带引起,芳香族化合物CH粘合在3100–3000cm-1,舒展在2944cm-1,酯类C=O舒展在1630–1860cm-1,来自于接枝淀粉。

这些特征峰表明了聚苯乙烯和聚出席甲基丙烯酸分子,因此,对ST/MMA接枝淀粉和ST/BA接枝淀粉的红外光谱提供支持性证据,两种聚合物都是进行的成功的淀粉接枝分子。

图7.红外光谱的淀粉接枝苯乙烯和甲基丙烯酸甲酯。

图8红外光谱原淀粉。

图9红外光谱的淀粉接枝苯乙烯和丙烯酸丁酯体系

3.8溶出率研究

GSG溶出率研究是在60℃在蒸馏水中,500毫克的GSG采取了直接在100毫升蒸馏水。

均匀温度用水浴来维持,每30秒抽取样本,溶解固体浓度的测量采用浊度仪。

溶解数据如图10所示。

图10.标出的时间位置对溶解固体的接枝淀粉用不同的单体比率:

ST/MMA:

80/20(×

),50/50(+),20/80(■)和ST/BA:

80/20(◊),50/50(Δ),

20/80(□)。

GSG溶出率降低与在苯乙烯含量的增量是同一个情况,GSG的渐近集中增加与在苯乙烯构成的减退,从而限制了苯乙烯的作用。

因此欲保持苯乙烯含量到最低,增加甲醇异丁烯酸(MMA)或丁基丙烯酸盐(BA)的集中。

3.9粘性

对GSG水溶液(5%w/v),聚合产品starch-ST-MMA/BA与ST-MMA乳液的流变性能进行了研究。

如图11~13显示了剪切率与上述溶液粘度的位置关系。

如图所示,溶液粘度的降低伴随着剪切率的增加显示了薄的剪切性质。

在下面等式给的GSG的水溶液的幂指数模型被用于适合实验性数据,

其中,μa是表观粘度(Pas),k是一贯性系数(N 

sn/m2),

是剪率(1/s),

n是幂指数

如图14和15所示,所有溶液都遵守剪切变薄的行为。

幂律指数的变化在0.5至0.33。

如图15所示,在ST/BA系统的情况下n的值减少而在ST含量的增量。

这是由于粘度增加,接枝效率在提高。

表5显示了接枝效率和水溶液的幂指数(5%w/v)通过不同的单体比例来获得GSG。

原淀粉溶液被用来比较这些性质。

可以看出,原淀粉幂指数与ST/MMA相比高,与ST/BA(20/80)系统的GSG相比几乎是一样的。

在反应过程中,引发剂目前在反应系统中引起淀粉分子的破裂,因此在接枝反应后幂指数会下降到一定程度。

此外,最终乳剂的粘度取决于接枝效率并ST/BA系统的情况下幂指数保持和原淀粉相同

图11.ST/MMA系统GSG的粘度的剪率位置点。

淀粉(×

),80/20(□),50/50(Δ),20/80(+)。

图12.ST/BA系统GSG的粘度的剪率位置点。

图13。

ST/MMA系统乳化液的粘度剪率位置点。

),80/20(□),50/50(Δ),20/80(+)

图14。

ST/MMA系统GSG的表观粘度的剪率Log–log位置点。

80/20(□),50/50(×

),淀粉(Δ)。

3.10棉纺织品上浆

本节所介绍的工序的目的是提供新合成的上浆产品用于棉的上浆,见证其暂时改善物理力学性能。

淀粉已广泛应用于商业上纺织经纱上浆中,特别是在棉纺织品上。

不过,它有严重的缺陷,最突出的一点是(a)分子非常大,限制它们渗透入纺织纱线中;

(b)粘度不稳定是因为在煮和上浆过程中温度的波动;

(c)薄层僵硬,尤其是在缺乏良好的润滑剂的情况下,(d)由微生物作用容易腐烂和退化。

为了克服或至少减少这些化学改造的缺陷,我们采取水解和已经强调的嫁接的方法。

表6显示了,用纯淀粉和接枝淀粉上浆的棉纱的物理力学性能,如拉伸强度和断裂伸长

图15。

ST/BA系统GSG的表观粘度的剪率Log–log位置点。

80/20(Δ),20/80

(□),50/50(×

表5

百分比嫁接和嫁接淀粉颗粒的幂指数数据的ST/MMA和ST/BA系统

接枝效率

幂指数

淀粉

0.461

43.80

34.12

28.39

0.411

0.459

-

ST/BA比例

49.65

55.34

58.82

0.377

0.446

表6上浆的棉织物的GSG物理力学性能

面料样品

拉伸强度(kgf)

断裂伸长率%

未上浆

1.139

8.45

原淀粉上浆

1.266

7.65

ST/BA接枝淀粉颗粒上浆

1.36

7.23

1.39

6.92

1.47

6.18

ST/MMA接枝淀粉颗粒上浆

1.392

7.78

1.456

6.76

1.454

7.76

表6的结果显示一个有趣的特点:

(1)棉纱样品用原淀粉上浆增加了拉伸强度,与未上浆的相比断裂伸长率下降。

(2)棉纱样品用ST/BA和ST/MMA接枝淀粉颗粒上浆与原淀粉上浆相比,具有更高的拉伸强度和较低的断裂伸长率。

(3)棉纱样品用ST/BA(20/80)接枝淀粉颗粒上浆和之前的情况相比有最高的拉伸强度和更低的断裂伸长率。

4结语

接枝淀粉是由ST和甲基丙烯酸甲酯/丙烯酸丁酯接枝共聚合成的。

对单体的最佳浓度比和引发剂浓度进行了测定。

百分比为50/50starch-g-polyST/polyBA和20/80starch-g-polyST/polyMMA嫁接发现有比其他比率的高。

过氧化氢的引发剂的最佳浓度是100mM。

接枝的最高比例是在starch-g-polyST/polyBA系统中找到。

淀粉接枝是由FTIR分析证实的。

由ST/BA系统GSG规定的棉纱有更高的拉伸强度和较低的断裂伸长率。

接枝率较高时,接枝淀粉颗粒溶解所需时间较长。

此外,该接枝淀粉颗粒黏度可以随着接枝百分数的增加而增加。

ST/BA中单体比例为20/80时有最高的拉伸强度和最低的断裂伸长率。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 总结汇报 > 学习总结

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2