搅拌器毕业设计说明书.docx

上传人:b****0 文档编号:9337903 上传时间:2023-05-18 格式:DOCX 页数:17 大小:106.88KB
下载 相关 举报
搅拌器毕业设计说明书.docx_第1页
第1页 / 共17页
搅拌器毕业设计说明书.docx_第2页
第2页 / 共17页
搅拌器毕业设计说明书.docx_第3页
第3页 / 共17页
搅拌器毕业设计说明书.docx_第4页
第4页 / 共17页
搅拌器毕业设计说明书.docx_第5页
第5页 / 共17页
搅拌器毕业设计说明书.docx_第6页
第6页 / 共17页
搅拌器毕业设计说明书.docx_第7页
第7页 / 共17页
搅拌器毕业设计说明书.docx_第8页
第8页 / 共17页
搅拌器毕业设计说明书.docx_第9页
第9页 / 共17页
搅拌器毕业设计说明书.docx_第10页
第10页 / 共17页
搅拌器毕业设计说明书.docx_第11页
第11页 / 共17页
搅拌器毕业设计说明书.docx_第12页
第12页 / 共17页
搅拌器毕业设计说明书.docx_第13页
第13页 / 共17页
搅拌器毕业设计说明书.docx_第14页
第14页 / 共17页
搅拌器毕业设计说明书.docx_第15页
第15页 / 共17页
搅拌器毕业设计说明书.docx_第16页
第16页 / 共17页
搅拌器毕业设计说明书.docx_第17页
第17页 / 共17页
亲,该文档总共17页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

搅拌器毕业设计说明书.docx

《搅拌器毕业设计说明书.docx》由会员分享,可在线阅读,更多相关《搅拌器毕业设计说明书.docx(17页珍藏版)》请在冰点文库上搜索。

搅拌器毕业设计说明书.docx

搅拌器毕业设计说明书

第一章绪论

搅拌可以使两种或多种不同的物质在彼此之中互相分散,从而达到均匀混合;也可以加速传热和传质过程。

在工业生产中,搅拌操作时从化学工业开始的,围绕食品、纤维、造纸、石油、水处理等,作为工艺过程的一部分而被广泛应用。

搅拌操作分为机械搅拌与气流搅拌。

气流搅拌是利用气体鼓泡通过液体层,对液体产生搅拌作用,或使气泡群一密集状态上升借所谓上升作用促进液体产生对流循环。

与机械搅拌相比,仅气泡的作用对液体进行的搅拌时比较弱的,对于几千毫帕•秒以上的高粘度液体是难于使用的。

但气流搅拌无运动部件,所以在处理腐蚀性液体,高温高压条件下的反应液体的搅拌时比较便利的。

在工业生产中,大多数的搅拌操作均系机械搅拌,以中、低压立式钢制容器的搅拌设备为主。

搅拌设备主要由搅拌装置、轴封和搅拌罐三大部分组成。

其结构形式如下:

(结构图)

第一节搅拌设备在工业生产中的应用范围很广,尤其是化学工业中,很多的化工生产都或多或少地应用着搅拌操作。

搅拌设备在许多场合时作为反应器来应用的。

例如在三大合成材料的生产中,搅拌设备作为反应器约占反应器总数的99%。

搅拌设备的应用范围之所以这样广泛,还因搅拌设备操作条件(如浓度、温度、停留时间等)的可控范围较广,又能适应多样化的生产。

搅拌设备的作用如下:

①使物料混合均匀;②使气体在液相中很好的分散;③使固体粒子(如催化剂)在

液相中均匀的悬浮;④使不相溶的另一液相均匀悬浮或充分乳化;⑤强化相间的传质(如吸收等);⑥强化

传热。

搅拌设备在石油化工生产中被用于物料混合、溶解、传热、植被悬浮液、聚合反应、制备催化剂等。

例如石油工业中,异种原油的混合调整和精制,汽油中添加四乙基铅等添加物而进行混合使原料液或产品均匀化。

化工生产中,制造苯乙烯、乙烯、高压聚乙烯、聚丙烯、合成橡胶、苯胺燃料和油漆颜料等工艺过程,都装备着各种型式的搅拌设备。

第二节搅拌物料的种类及特性

搅拌物料的种类主要是指流体。

在流体力学中,把流体分为牛顿型和非牛顿型。

非牛顿型流体又分为宾汉塑性流体、假塑性流体和胀塑性流体。

在搅拌设备中由于搅拌器的作用,而使流体运动。

第三节搅拌装置的安装形式

搅拌设备可以从不同的角度进行分类,如按工艺用途分、搅拌器结构形式分或按搅拌装置的安装形式分等。

一下仅就搅拌装置的各种安装形式进行分类说明。

一、立式容器中心搅拌

将搅拌装置安装在历史设备筒体的中心线上,驱动方式一般为皮带传动和齿轮传动,用普通电机直接联接。

一般认为功率3.7kW—下为小型,5.5〜22kW为中型。

本次设计中所采用的电机功率为18.5kW,故为中型电

机。

二、偏心式搅拌

搅拌装置在立式容器上偏心安装,能防止液体在搅拌器附近产生“圆柱状回转区”,可以产生与加挡板时相

近似的搅拌效果。

搅拌中心偏离容器中心,会使液流在各店所处压力不同,因而使液层间相对运动加强,增加了液层间的湍动,使搅拌效果得到明显的提高。

但偏心搅拌容易引起振动,一般用于小型设备上比较适合。

三、倾斜式搅拌

为了防止涡流的产生,对简单的圆筒形或方形敞开的立式设备,可将搅拌器用甲板或卡盘直接安装在设备筒体的上缘,搅拌轴封斜插入筒体内。

此种搅拌设备的搅拌器小型、轻便、结构简单,操作容易,应用范围广。

一般采用的功率为0.1〜22kW,使

用一层或两层桨叶,转速为36〜300r/min,常用于药品等稀释、溶解、分散、调和及pH值的调整等。

四、底搅拌

搅拌装置在设备的底部,称为底搅拌设备。

底搅拌设备的优点是:

搅拌轴短、细,无中间轴承;可用机械密封;易维护、检修、寿命长。

底搅拌比上搅拌的轴短而细,轴的稳定性好,既节省原料又节省加工费,

而且降低了安装要求。

所需的检修空间比上搅拌小,避免了长轴吊装工作,有利于厂房的合理排列和充分利用。

由于把笨重的减速机装置和动力装置安放在地面基础上,从而改善了封头的受力状态,同时也便于这些装置的维护和检修。

底搅拌虽然有上述优点,但也有缺点,突岀的问题是叶轮下部至轴封处的轴上常有固体物料粘积,时间一长,变成小团物料,混入产品中影响产品质量。

为此需用一定量的室温溶剂注入其间,注入速度应大于聚合物颗粒的沉降速度,以防止聚合物沉降结块。

另外,检修搅拌器和轴封时,一般均需将腹内物料排净。

五、卧式容器搅拌

搅拌器安装在卧式容器上面,壳降低设备的安装高度,提高搅拌设备的抗震性,改进悬浮液的状态等。

可用于搅拌气液非均相系的物料,例如充气搅拌就是采用卧式容器搅拌设备的。

六、卧式双轴搅拌

搅拌器安装在两根平行的轴上,两根轴上的搅拌叶轮不同,轴速也不等,这种搅拌设备主要用于高黏液体采用卧式双轴搅拌设备的目的是要获得自清洁效果。

七、旁入式搅拌

旁入式搅拌设备是将搅拌装置安装在设备筒体的侧壁上,所以轴封结构是罪费脑筋的。

旁入式搅拌设备,一般用于防止原油储罐泥浆的堆积,用于重油、汽油等的石油制品的均匀搅拌,用于各种液体的混合和防止沉降等。

八、组合式搅拌

有时为了提高混合效率,需要将两种或两种以上形式不同、转速不同的搅拌器组合起来使用,称为组合式搅拌设备。

第二章搅拌罐结构设计

第一节罐体的尺寸确定及结构选型

(一)筒体及封头型式

选择圆柱形筒体,采用标准椭圆形封头

(二)确定内筒体和封头的直径

发酵罐类设备长径比取值范围是1.7〜2.5,综合考虑罐体长径比对搅拌功率、传热以及物料特性的影响选

取H/Di=2.5

根据工艺要求,装料系数「=0.7,罐体全容积V=9m3,罐体公称容积(操作时盛装物料的容积)

V=V*=90.7=6.3m3

Di

即Di

=346.3

-3.142.50.7

1.66m

初算筒体直径

圆整到公称直径系列,去DN=1700mm。

封头取与内筒体相同内经,封头直边高度h^40mm,

(三)确定内筒体高度H

3

当DN=1700mm,h^40mm时,查《化工设备机械基础》表16-6得封头的容积v=0.734m

V-v4(9-0.734)

二_2一3.141.72

H3.64m,取H=3.7m

31

—Di

4

核算H/Dj与

H/Di=3.7/1.7=2.18,该值处于1.7~2.5之间,故合理。

该值接近0.7,故也是合理的。

(四)选取夹套直径

表1夹套直径与内通体直径的关系

内筒径Di,mm

500~600

700~1800

2000~3000

夹套Dj,mm

Dj+50

Di+100

Di+200

由表1,取Dj=Di100=1700100=1800mm。

夹套封头也采用标准椭圆形,并与夹套筒体取相同直径

(六)校核传热面积

22

工艺要求传热面积为11m,查《化工设备机械基础》表16-6得内筒体封头表面积Aj=3.34m,3.7m

高筒体表面积为

A=:

Di3.7=3.141.73.7=19.75m2

总传热面积为

A=3.1419.75=23.0911

故满足工艺要求。

第二节内筒体及夹套的壁厚计算

(一)选择材料,确定设计压力

按照《钢制压力容器》(GB150-98)规定,决定选用0Cr18Ni9高合金钢板,该板材在150C一下

的许用应力由《过程设备设计》附表D1查取,[二]七=103MPa,常温屈服极限J=137MPa

计算夹套内压

3

介质密度「-1000kg/m3

液柱静压力-gH=1000103.7=0.037MPa

最高压力Pmax=0.5MPa

设计压力p=1.1Pmax=0.55MPa

所以QgH=0.037MPa.5%P=0.0275MPa

故计算压力Pc=P:

、gH=0.550.037=0.587MPa

(三)夹套筒体和夹套封头厚度计算

夹套材料选择Q235-B热轧钢板,其a=235MPa,[汀=113MPa

夹套筒体计算壁厚门

PCDj

2[汀-PC

夹套采用双面焊,局部探伤检查,查《过程设备设计》表4-3得即=0.85

查《过程设备设计》表4-2取钢板厚度负偏差C^0.8mm,对于不锈钢,当介质的腐蚀性极微时,可取

腐蚀裕量C2=0,对于碳钢取腐蚀裕量C2=2mm,故内筒体厚度附加量Ca=C1C^=0.8mm,

夹套厚度附加量C^C1C^2.8mm。

根据钢板规格,取夹套筒体名义厚度、:

nj=14mm。

夹套封头计算壁厚^j为

取厚度附加量C=2.8mm,确定取夹套封头壁厚与夹套筒体壁厚相同

(四)内筒体壁厚计算

①按承受0.587MPa内压计算

焊缝系数同夹套,则内筒体计算壁厚为:

②按承受0.55MPa外压计算

设内筒体名义厚度靳=12mm,则以=“-CR2—0尸81mm2内筒体外径

D。

=Dj2、」=1700211.2=1722.4mm。

11

内筒体计算长度二Hjh二2800(42512)=2945.7mm。

J33

则L/Do=1.71,Do/%=153.79,由《过程设备设计》图4-6查得A=0.0004,图4-9查得

B=50MPa,此时许用外压[P]为:

B6e50X11.2

[P]e0.33MPa:

:

0.55MPa

Do1722.4

不满足强度要求,再假设„-.n=16mm,■则、:

e二—Ca=160=8mm5.

Do=Dj2、.n=1700215.2=1730.4mm,

11

内筒体计算长度L=Hj—h=2800—(42516)=2947mm

J33

则L/Do=1.7,D。

/飞=113.84

查《过程设备设计》图4-6得A=0.0006,图4-9得B=60MPa,此时许用外压为:

BQ6005.2

[P]e0.562MPa0.55MPa

Do1730.4

故取内筒体壁厚、:

n=16mm可以满足强度要求。

(5)考虑到加工制造方便,取封头与夹套筒体等厚,即取封头名义厚度'nk^16mm。

按内压计算肯定

是满足强度要求的,下面仅按封头受外压情况进行校核。

封头有效厚度、:

e=16-0.8=15.2mm。

由《过程设备设计》表4-5查得标准椭圆形封头的形状系数

Q=0.9,则椭圆形封头的当量球壳内径RuQDi=0.91700=1530mm,计算系数A

d152

A=0.125」=0.1250.001242

R1530

查《过程设备设计》图4-9得B=110MPa

 

故封头壁厚取16mm可以满足稳定性要求。

(6)水压试验校核

(7)

试验压力

 

1

内压试验校核

 

而0.9==0.9137=123.3MPa

0.9*=0.9235二211.5MPa

故内筒体和夹套均满足水压试验时的应力要求。

2外压实验校核

由前面的计算可知,当内筒体厚度取16mm时,它的许用外压为[P]=0.562MPa,小于夹套0.6MPa

的水压试验压力,故在做夹套的压力实验校核时,必须在内筒体内保持一定压力,以使整个试验过程中的任意时间内,夹套和内同的压力差不超过允许压差。

第三节人孔选型及开孔补强设计

①人孔选型

选择回转盖带颈法兰人孔,标记为:

人孔PN2.5,DN450,HG/T21518-2005,尺寸如下表所示:

密封面

形式

公称压力PN(MP

公称直径DN

d^s

d

D

D1

H1

H2

b

突面

4.0

450

480^14

451.6

685

610

270

137

57

(RF

 

b

b2

A

B

L

do

螺柱

螺母

螺柱

总质量

(kg)

数量

直径工长度

41

46

375

175

250

24

20

40

M33汇2^165

245

开孔补强设计

最大的开孔为人孔,筒节、:

nt=16mm,厚度附加量C=0.6mm,补强计算如下:

开孔直径d=45020.6=451.2mm

圆形封头因开孔削弱所需补强面积为:

A二d、.2、(、nt_C)(1-fr)

人孔材料亦为不锈钢0Cr18Ni9,所以fr=1.0

1.587x17002

所以A=4500=2560.3mm

2汇103汉0.85—0.5汉.587

有效补强区尺寸:

0=丿右二一451.216=84.97mm

B=2d=2451.2=902.4mmm

在有效补强区范围内,壳体承受内压所需设计厚度之外的多余金属面积为:

A=(B-d)(、e-、)-2(、nt-C)('e-、)(1-fr)

2

故A,=(B-d)(、e-、)=451.2(15.2-5.7)=4376.64mm

可见仅A就大于A,故不需另行补强。

最大开孔为人孔,而人孔不需另行补强,则其他接管均不需另行补强。

第四节搅拌器的选型

(一)搅拌器选型

桨径与罐内径之比叫桨径罐径比d/D,涡轮式叶轮的d/D一般为0.25〜0.5,涡轮式为快速型,快速型搅拌器一般在H1.3D时设置多层搅拌器,且相邻搅拌器间距不小于叶轮直径d。

适应的最高黏度为50Pa*s左右。

搅拌器在圆形罐中心直立安装时,涡轮式下层叶轮离罐底面的高度C一般为桨径的1~1.5倍。

如果为了防

止底部有沉降,也可将叶轮放置低些,如离底高度C=D/10.最上层叶轮高度离液面至少要有1.5d的深度。

符号说明

b――键槽的宽度

B――搅拌器桨叶的宽度

d――轮毂内经

do――搅拌器桨叶连接螺栓孔径

d1――搅拌器紧定螺钉孔径

d2――轮毂外径

Dj――搅拌器直径

D1――搅拌器圆盘的直径

G搅拌器参考质量

m轮毂高度

h2圆盘到轮毂底部的高度

L――搅拌器叶片的长度

R――弧叶圆盘涡轮搅拌器叶片的弧半径

M――搅拌器许用扭矩(N・m)

t——轮毂内经与键槽深度之和

――搅拌器桨叶的厚度

:

訂搅拌器圆盘的厚度

 

WYWCYWDY

工艺给定搅拌器为六弯叶圆盘涡轮搅拌器,其后掠角为〉=45°,圆盘涡轮搅拌器的通用尺寸为桨径dj:

23

桨长I:

桨宽b=20:

5:

4,圆盘直径一般取桨径的,弯叶的圆弧半径可取桨径的-。

38

查HG-T3796.1〜12-2005,选取搅拌器参数如下表

Dj

d

d2

D1

d1

6

6

550

80

120

370

M10

M10

5

6

 

B

h2

L

b

t

M

G

110

120

40

137

22

85.4

2526

14.9

由前面的计算可知液层深度H=2.45m,而1.3Di=2210mm,故H・1.3Di,则设置两层搅拌器。

为防止底部有沉淀,将底层叶轮放置低些,离底层高度为425mm,上层叶轮高度离液面2DJ的深度,

即1025mm。

则两个搅拌器间距为1000mm,该值大于也轮直径,故符合要求。

(二)搅拌附件

①挡板

挡板一般是指长条形的竖向固定在罐底上板,主要是在湍流状态时,为了消除罐中央的“圆柱状回转区”而增设的。

罐内径为1700mm,选择4块竖式挡板,且沿罐壁周围均匀分布地直立安装。

第三章传动装置选型

第一节减速机选型

由工艺要求可知,传动方式为带传动,搅拌器转速为220r/min,电机功率为18.5kW,查《长城搅拌》

表3.5-3选择减速机型号为FPV6

减速机主要参数及尺寸如下表:

第二节联轴器的选型

选择减速机输岀轴轴头型式为普通型,选择GT型刚性联轴器

联轴器主要尺寸为:

轴径

D1

D2

D3

D4

&

n-dm

do

l2

L1

H

80

220

185

120

150

24

28

6-M16

M16

30

162

324

第四章搅拌轴的设计与校核

4.1符号说明

d――设计最终确定的实心轴的轴径或空心轴外径,mm;

d°――设计最终确定的密封部位实心轴轴径或空心轴外径,mm;

d1——按扭转变形计算的传动侧轴承处实心轴轴径或空心轴外径,mm;

d2――按强度计算的单跨轴跨间段实心轴轴径或空心轴轴径或空心轴外径,mm;

dL――单跨轴的实心轴轴径或空心轴外径,mm;

E――轴材料的弹性模量,MPa;

[e]――搅拌轴及各层圆盘(搅拌器及附件)组合重心处的许用偏心距,mm;

Fe――搅拌轴及各层圆盘(搅拌器及附件)组合重心处的质量偏心引起的离心力,N;

Fhi――第i个搅拌器上的流体径向力,N;

4

lL——单跨轴跨间轴段(实心或空心)的惯性矩,mm;

Ki――单跨轴第i个圆盘(搅拌器及附件)至传动侧轴承距离与轴长L的比值(i=1、2……m);

L――单跨轴两轴承之间的长度,mm;

J、L2……Li――1~i个圆盘(搅拌器及附件)的每个圆盘至传动侧轴承的距离(对于单跨轴),mm;

Le――搅拌轴及各层圆盘(搅拌器及附件)组合重心离传动侧轴承的距离(对于单跨轴),mm;

M——轴上弯矩总和,N・m;

Ma――由轴向推力引起作用于轴的弯矩,N*m;

Mn――按传动装置效率2计算的搅拌轴传递扭矩,N•m;

Mr——由径向力引起作用于轴的弯矩,N・m;

m――固定在搅拌轴上的圆盘(搅拌器及附件)数;

m1>m2……mi——圆盘(搅拌器及附件)1、2……i的质量,kg;mie、m2e……me――圆盘(搅拌器及附件)1、2……i的有效质量,mL――单跨轴L段轴的质量

i229

mLd2(1-N;)・L」s10kg

4

mLe――单跨轴L段轴的有效质量,kg;

mw――单跨轴及各层圆盘(搅拌器及附件)的组合质量,

No——空心轴内径与外径的比值;

n——轴的转速,r/min;

nk——轴的一阶临界转速,r/min;

Pn电动机额定功率,k^V;

p――设备内的设计压力,MPa;

S――相当质量的折算点;

S——传动侧轴承游隙,mm;

S――单跨轴末端轴承游隙,mm;

W――单跨轴L段有效质量的相当质量,kg;

W、W2……W――ge、m2e……me的相当质量,kg;

Ws——在S点所有相当质量的总和,kg;

-――搅拌轴轴线与安装垂直线的夹角,(o);

弓一一第个搅拌器叶片倾斜角,(o);

――轴的扭转角,o/m;

kg;

mm;

-1X――由轴承径向游隙引起在轴上离图或图中轴承距离x处的径向位移,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 高中教育 > 其它课程

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2