法拉第磁光效应试验.docx

上传人:b****1 文档编号:1016032 上传时间:2023-04-30 格式:DOCX 页数:26 大小:1,011.76KB
下载 相关 举报
法拉第磁光效应试验.docx_第1页
第1页 / 共26页
法拉第磁光效应试验.docx_第2页
第2页 / 共26页
法拉第磁光效应试验.docx_第3页
第3页 / 共26页
法拉第磁光效应试验.docx_第4页
第4页 / 共26页
法拉第磁光效应试验.docx_第5页
第5页 / 共26页
法拉第磁光效应试验.docx_第6页
第6页 / 共26页
法拉第磁光效应试验.docx_第7页
第7页 / 共26页
法拉第磁光效应试验.docx_第8页
第8页 / 共26页
法拉第磁光效应试验.docx_第9页
第9页 / 共26页
法拉第磁光效应试验.docx_第10页
第10页 / 共26页
法拉第磁光效应试验.docx_第11页
第11页 / 共26页
法拉第磁光效应试验.docx_第12页
第12页 / 共26页
法拉第磁光效应试验.docx_第13页
第13页 / 共26页
法拉第磁光效应试验.docx_第14页
第14页 / 共26页
法拉第磁光效应试验.docx_第15页
第15页 / 共26页
法拉第磁光效应试验.docx_第16页
第16页 / 共26页
法拉第磁光效应试验.docx_第17页
第17页 / 共26页
法拉第磁光效应试验.docx_第18页
第18页 / 共26页
法拉第磁光效应试验.docx_第19页
第19页 / 共26页
法拉第磁光效应试验.docx_第20页
第20页 / 共26页
亲,该文档总共26页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

法拉第磁光效应试验.docx

《法拉第磁光效应试验.docx》由会员分享,可在线阅读,更多相关《法拉第磁光效应试验.docx(26页珍藏版)》请在冰点文库上搜索。

法拉第磁光效应试验.docx

法拉第磁光效应试验

5.16法拉第磁光效应实验

1845年,法拉第(M.Faraday)在探索电磁现象和光学现象之间

的联系时,发现了一种现象:

当一束平面偏振光穿过介质时,如果在介质中,沿光的传播方向上加上一个磁场,就会观察到光经过样品后偏振面转过一个角度,即磁场使介质具有了旋光性,这种现象后来就称为法拉第效应。

法拉第效应第一次显示了光和电磁现象之间的联系,

促进了对光本性的研究。

之后费尔德(Verdet)对许多介质的磁致旋光进行了研究,发现了法拉第效应在固体、液体和气体中都存在。

法拉第效应有许多重要的应用,尤其在激光技术发展后,其应用

价值越来越受到重视。

如用于光纤通讯中的磁光隔离器,是应用法拉

第效应中偏振面的旋转只取决于磁场的方向,而与光的传播方向无关,这样使光沿规定的方向通过同时阻挡反方向传播的光,从而减少光纤

中器件表面反射光对光源的干扰;磁光隔离器也被广泛应用于激光多

利用法拉第效应驰豫时间短的特点制成的磁光效应磁强计可以测量脉冲强磁场、交变强磁场。

在电流测量方面,利用电流的磁效应和光纤材料的法拉第效应,可以测量几千安培的大电流和几兆伏的高压电流。

磁光调制主要应用于光偏振微小旋转角的测量技术,它是通过测

量光束经过某种物质时偏振面的旋转角度来测量物质的活性,这种测量旋光的技术在科学研究、工业和医疗中有广泛的用途,在生物和化学领域以及新兴的生命科学领域中也是重要的测量手段。

如物质的纯度控制、糖分测定;不对称合成化合物的纯度测定;制药业中的产物

分析和纯度检测;医疗和生化中酶作用的研究;生命科学中研究核糖和核酸以及生命物质中左旋氨基酸的测量;人体血液中或尿液中糖份的测定等。

在工业上,光偏振的测量技术可以实现物质的在线测量;

在磁光物质的研制方面,光偏振旋转角的测量技术也有很重要的应用。

5.16.1实验要求

1.实验重点

用特斯拉计测量电磁铁磁头中心的磁感应强度,分析线性范

围。

法拉第效应实验:

正交消光法检测法拉第旋光玻璃的费尔德常

数。

磁光调制实验:

熟悉磁光调制的原理,理解倍频法精确测定消

光位置。

磁光调制倍频法研究法拉第效应,精确测量不同样品的费尔德

常数。

2.预习要点

1什么是法拉第效应?

法拉第效应有何重要应用?

2了解顺磁、弱磁、抗磁性、铁磁性或亚铁磁性材料的基本特性,

以及费尔德常数V与磁光材料性质的关系。

3

比较法拉第磁光效应与固有旋光效应的异同。

5.16.2实验原理

1.法拉第效应

实验表明,在磁场不是非常强时,如图5.16.1所示,偏振面旋转

的传播方向上的分量B成正比,即:

比例系数V由物质和工作波长决定,表征着物质的磁光特性,这个系

数称为费尔德(Verdet)常数。

费尔德常数V与磁光材料的性质有关,对于顺磁、弱磁和抗磁性

材料(如重火石玻璃等),V为常数,即与磁场强度B有线性关系;

单的线性关系。

表5.16.1为几种物质的费尔德常数。

几乎所有物质(包括气体、

液体、固体)都存在法拉第效应,不过一般都不显著。

不同的物质,偏振面旋转的方向也可能不同。

习惯上规定,以顺

着磁场观察偏振面旋转绕向与磁场方向满足右手螺旋关系的称为“右

旋”介质,其费尔德常数V>0;反向旋转的称为“左旋”介质,费尔

德常数V<0o

对于每一种给定的物质,法拉第旋转方向仅由磁场方向决定,而

与光的传播方向无关(不管传播方向与磁场同向或者反向),这是法拉第磁光效应与某些物质的固有旋光效应的重要区别。

固有旋光效应的旋光方向与光的传播方向有关,即随着顺光线和逆光线的方向观察,线偏振光的偏振面的旋转方向是相反的,因此当光线往返两次穿过固有旋光物质时,线偏振光的偏振面没有旋转。

而法拉第效应则不然,在磁场方向不变的情况下,光线往返穿过磁致旋光物质时,法拉第旋转角将加倍。

利用这一特性,可以使光线在介质中往返数次,从而使旋转角度加大。

这一性质使得磁光晶体在激光技术、光纤通信技术中

表5.16.1

获得重要应用。

物质

(mm

V

589.3

1.31102

二硫化碳

589.3

4.17102

轻火石玻璃

589.3

3.17102

重火石玻璃

830.0

8102〜10102

冕玻璃

632.8

4.36102〜

7.27102

石央

632.8

4.83102

磷素

589.3

12.3102

与固有旋光效应类似,法拉第效应也有旋光色散,即费尔德常数

几种材料的费尔德常数(单位:

弧分/特斯拉•厘米)

随波长而变,一束白色的线偏振光穿过磁致旋光介质,则紫光的偏振面要比红光的偏振面转过的角度大,这就是旋光色散。

实验表明,磁

旋光色散曲线又称为法拉第旋转谱。

图5.16.2磁致旋光色散曲线

 

2.法拉第效应的唯象解释

从光波在介质中传播的图象看,法拉第效应可以做如下理解:

束平行于磁场方向传播的线偏振光,可以看作是两束等幅左旋和右旋

圆偏振光的迭加。

这里左旋和右旋是相对于磁场方向而言的。

图5.16.3法拉第效应的唯象解释

如果磁场的作用是使右旋圆偏振光的传播速度c/nR和左旋圆偏

振光的传播速度c/m不等,于是通过厚度为d的介质后,便产生不

同的相位滞后:

LJriLd

(5.16.2)

式中

为真空中的波长。

这里应注意,圆偏振光的相位即旋转电矢量

的角位移;相位滞后即角位移倒转。

在磁致旋光介质的入射截面上,

入射线偏振光的电矢量E可以分解为图5.16.3(a)所示两个旋转方向

不同的圆偏振光Er和El,通过介质后,它们的相位滞后不同,旋转方

向也不同,在出射界面上,两个圆偏振光的旋转电矢量如图5.16.3(b)

所示。

当光束射出介质后,左、右旋圆偏振光的速度又恢复一致,我们又可以将它们合成起来考虑,即仍为线偏振光。

从图上容易看出,

由介质射出后,两个圆偏振光的合成电矢量e的振动面相对于原来的

L)

(5.16.3

所以

-(R

2

(5.16.4

由(6.16.2)式得

(5.16.5

称为比法拉第旋转。

因为在铁磁或者亚铁磁等强磁介质中,法拉第旋

转角与外加磁场不是简单的正比关系,并且存在磁饱和,所以通常用

微观上如何理解磁场会使左旋、右旋圆偏振光的折射率或传播速

度不同呢?

上述解释并没有涉及这个本质问题,所以称为唯象理论。

从本质上讲,折射率nR和m的不同,应归结为在磁场作用下,原子能

级及量子态的变化。

这已经超出了我们所要讨论的范围,具体理论可以查阅相关资料。

其实,从经典电动力学中的介质极化和色散的振子模型也可以得

到法拉第效应的唯象理解。

在这个模型中,把原子中被束缚的电子看做是一些偶极振子,把光波产生的极化和色散看作是这些振子在外场作用下做强迫振动的结果。

现在除了光波以外,还有一个静磁场用在电子上,于是电子的运动方程是

(5.16.6)

m竽kreEe竺B

dt2dt

式中

是电子离开平衡位置的位移,m和e分别为电子的质量和电荷,k是这个偶极子的弹性恢复力。

上式等号右边第一项是光波的电场对

电子的作用,第二项是磁场作用于电子的洛仑兹力。

为简化起见,略去了光波中磁场分量对电子的作用及电子振荡的阻尼(当入射光波长

位于远离介质的共振吸收峰的透明区时成立),因为这些小的效应对于

理解法拉第效应的主要特征并不重要。

(5.16.7)

方向传播并且是右旋圆偏振光,用复数形式表示为

EExeitiEyeit

 

将式(5.16.7)

写成分量形式

(02

将式(5.16.9)

2ee

)xi—By—Ex

mm

2ee

)yi——Bx—Ey

mm

乘i并与式(5.16.8)相加可得

(5.16.8

(5.16.9

/22\/

(0)(x

ee

iy)—B(xiy)—(ExiEy)

mm

(5.16.10

 

因此,电子振荡的复振幅为

(5.16.11

e

xiym(022)eB(ExiEy)

设单位体积内有N个电子,则介质的电极化强度矢量

PNer。

宏观电动力学的物质关系式P勺E(为有效的极化率张量)可得

PNerNe(xiy)eit0E0E0(ExiEy)eit

(5.16.12

将式

(5.16.10)代入式(5.16.12)得到

Ne2/m0

22eB

0B

m

c=eHm(c称为回旋加速角频率),则

(5.16.13

由于

n2/01

2

nR

对于可见光,

<<

式中

Ne2/m0

~22

0c

(5.16.14

,因此

Ne2/m0

"22

0c

(5.16.15

为(2.5-4.7)1015s-1,当B=1T时,

,这种情况下式(5.16.15)可以表示为

nR

L=

Ne2/m0

_"11-1c~1.710s

(5.16.16)

c/2=(e/2m)B为电子轨道磁矩在外磁场中经典拉莫尔

 

(Larmor)进动频率。

对比无磁场时的色散公式

可以看到两点:

一是在外磁场的作用下,电子做受迫振动,振子的固

由于0的变化导致了折射率的变化,并且左旋和右旋圆偏振的变化

是不相同的,尤其在接近0时,差别更为突出,这便是法拉第效

应。

由此看来,法拉第效应和吸收光谱的塞曼效应是起源于同一物理

过程。

)2

(5.16.23

dnNe2

2

dm0n(0

左旋和右旋只是相对于磁场方向而言的,与光波的传播方向同磁场方向相同或相反无关。

因此,法拉第效应便有与自然旋光现象完全不同的不可逆性。

3.磁光调制原理

根据马吕斯定律,如果不计光损耗,则通过起偏器,经检偏器输

2

I10cos

出的光强为

(5.16.25

励磁线圈所产生的正弦交变磁场B=Bosint,能够使磁光调制晶体产

(5.16.26)

出光强由式(5.16.25)变为

22

I10cos()Iocos(osint)

电流产生的光振动面旋转,转化为光的强度调制,这就是磁光调制的基本原理。

图5.16.4

透光轴夹角=45时,光强调制幅度最大

Amaxl0sin20

45角

(5.16.32)

所以,在做磁光调制实验时,通常将起偏器和检偏器透光轴成

放置,此时输出的调制光强由式(5.16.27)知

I]90|0sin2

(5.16.34)

=0,即起偏器和检偏器偏振方向平行时,输出的调制光强由式

(5.16.26)知

.2

010cos

(5.16.35)

若将输出的调制光强入射到硅光电池上,转换成光电流,在经过

上可以观察到由式(5.16.34)和式(5.16.35)决定的倍频信号。

是因为一般都很小,由式(5.16.34)和式(5.16.35)可知,输出

4.磁光调制器的光强调制深度

度,因为此时调制幅度最大。

所以有

调制角幅度

Imax"Imax=Iosin20,Imax+Imax=I0

1.1ImaxImin

0—Sin

2II.

厶'max'min

(5.16.40)

由式(5.16.39)和式(5.16.40)可以知道,测得磁光调制器的调制

变磁场B的幅度&连续可调,或者说随输入低频信号电流的幅度i0连

续可调,所以磁光调制器的光强调制深度io连续可调。

只要选定调制

频率f(如f=500Hz)和输入励磁电流io,并在示波器上读出在=45

将读出的Imax和Imin值,代入式(5.16.39)和式(5.16.40),即

测量不同磁场B0或电流i0下的Imax和Imin值,做出~i0和~i0曲

线图,其饱和值即为对应的最大调制幅度(0)max和最大光强调制幅度

maxo

5.16.3仪器介绍

FD-MOC-A磁光效应综合实验仪包括:

导轨滑块光学部件、两个

控制主机、直流可调稳压电源、双踪示波器。

光学元件的放置如图5.16.5所示,分别安装有激光器、起偏器、

检偏器、测角器(含偏振片)、调制线圈、会聚透镜、探测器、电磁铁。

也可以并联,具体连接方式及磁场方向可以通过特斯拉计测量确定。

 

图5.16.5实验装置图

两个控制主机共包括五部分:

特斯拉计、调制信号发生器、激光

3.调节信号

1.调零旋钮2.接特斯拉计探头

频率4.调节信号幅度5.接示波器,观察调制

信号

.电源开关8.调制信-

9.特斯拉计测量数值显

6.激光器电源7

输出,接调制线圈示面板

5.16.6(b)所

如图5.16.6(a)所示,光功率计和选频放大器面板如图示。

 

 

1.琴键换档开关2.调零旋钮3.基频信号输入端,接光电接收器4.倍频信号输入端,接光电接收器5.接示波器,观察基频信号

6.接示波器,观察倍频信号功率计输入端,接光电接收器

图5.16.6(b)控制主机(光功率计)

并联(应预先判断单个磁极的方向)。

准为中心孔完全通光),并使磁头间隙为一定数值,如如:

20mn或者10mm

3将特斯拉计探头与装有特斯拉计的磁光效应综合实验仪主机

对应五芯航空插座相连,另外一端通过探头臂固定在电磁铁上,并使探头处于两个磁头正中心,旋转探头方向,使磁力线垂直穿过探头前端的霍尔传感器,这样测量出的磁感应强度最大,对应特斯拉计此时测量最准确。

4

调节直流稳压电源的电流调节电位器,使电流逐渐增大,并记

FD-MOC-/磁光效应综合实验仪

•出i:

~一

特斯拉计信号发生器III激光器电源

调零探头频率幅度示波器IDC3VJ—I

「i_L_r_ii

上海复旦天欣科教仪器有限公司

图5.16.7

图5磁场测量装置连接

控制主机(特斯拉计)

 

录不同电流情况下的磁感应强度。

然后列表画图分析电流一中心磁感应强度的线性变化区域,并分析磁感应强度饱和的原因。

2.正交消光法测量法拉第效应实验(图5.16.8)

器依次放置在光学导轨上;

光功率计的“输入”端相连;

联);

图5.16.8正交消光法测量法拉第效应实验装置连

接示意

将恒流电源与电磁铁相连(注意电磁铁两个线圈一般选择并

在磁头中间放入实验样品,样品共两种,这里选择费尔德常数

比较大的法拉第旋光玻璃样品。

5调节激光器,使激光依次穿过起偏器、透镜、磁铁中心、样品、

先拿去检偏器,

检偏器,并能够被光电接收器接收;连接光路和主机,

调节激光器,使激光斑正好入射进光电探测器(可以调节探测器前的

半导体激光器

率计输出数值最大(可以换档调节),这样调节是因为,输出的是部分偏振光,所以实验前应该使起偏器的起偏方向和激光器的振动方向较强的方向一致,这样输出光强最大,以后的实验中就可以固定起偏器的方向。

6由于半导体激光器为部分偏振光,可调节起偏器来调节输入光

强的大小;调节检偏器,使其与起偏器偏振方向正交,这时检测到的

7打开恒流电源,给样品加上恒定磁场,可看到光功率计读数增

大,转动检偏器,使光功率计读数为最小,读取此时检偏器的角度

2,得到样品在该磁场下的偏转角

⑧关掉半导体激光器,取下样品,用高斯计测量磁隙中心的磁感

图5.16.9磁光调制实验装置连接示意

 

1将激光器、起偏器、调制线圈、检偏器、光电接收器依次放置

在光学导轨上;

2

将主机上调制信号发生器部分的“示波器”端与示波器的“CH1

注意不要使调制信号变形(即不失真),调节“频率”旋钮可微调调制信

号的频率;

3将激光器与主机上“3V输出”相连,调节激光器,使激光从

调制线圈中心样品中穿过,并能够被光电接收器接收;

线相连;

⑤将光电接收器与主机上信号输入部分的“基频”

旋钮,使基频信号最强,调节检偏器与起偏器的夹角,观察基频信号的变化;

⑦调节检偏器到消光位置附近,将光电接收器与主机上信号输入

部分的“倍频”端相连,同时将示波器的“CH2端与选频放大部分的

“倍频”端相连,调节调制信号发生器部分的“频率”旋钮,使倍频信号最强,微调检偏器,观察信号变化,当检偏器与起偏器正交时,即消光位置,可以观察到稳定的倍频信号。

4.磁光调制倍频法测量法拉第效应实验(图5.16.10)

1将半导体激光器、起偏器、透镜、电磁铁、调制线圈、有测微

机构的检偏器、光电接收器依次放置在光学导轨上;

2在电磁铁磁头中间放入实验样品,将恒流电源与电磁铁相连,

CH1端相

将主机上调制信号发生器部分的“示波器”端与示波器的“连;将激光器与主机上“3V输出”相连,调节激光器,使激光依次穿

过各元件,并能够被光电接收器接收;将调制线圈与主机上调制信号发生器部分的“输出”端用音频线相连;将光电接收器与主机上信号

输入部分的“基频”端相连;用Q9线连接选频放大部分的“基频”端

与示波器的“CH2端;

接收器与主机上信号输入部分的“倍频”端相连,同时将示波器的“CH2”

端与选频放大部分的“倍频”端相连,微调检偏器的侧微器到可以观

4打开恒流电源,给样品加上恒定磁场,可看到倍频信号发生变

化,调节检偏器的侧微器至再次看到稳定的倍频信号,读取此时检偏

器的角度2,得到样品在该磁场下的偏转角

⑤关掉半导体激光器,取下样品,用高斯计测量磁隙中心的磁感

 

FD-MOC-磁光效应综合实验仪

卩光功率计|h信^输^!

频放_iiCLjl二IhIlI

上海复旦天欣科教仪器有限公司

图8磁光调制倍频法测量法拉第效应连接示意

图5.16.10倍频法测量法拉第效应实验装置连接示意

该样品的费尔德常数V

【注意事项】

以避

①实验时不要将直流的大光强信号直接输入进选频放大器,

免对放大器的损坏。

2起偏器和检偏器都是两个装有偏振片的转盘,读数精度都为

1,仪器还配有一个装有螺旋测微头的转盘,转盘中同样装有偏振片,

其中外转盘的精度也为1,螺旋测微头的精度为0.01mm测量范围为8mm即将角位移转化为直线位移,实现角度的精确测量。

3实验仪的电磁铁的两个磁头间距可以调节,这样不同宽度的样

品均可以放置于磁场中间,并且实验中可以将手臂形特斯拉计探头固定架测量中心磁场的磁感应强度。

④实验结束后,将实验样品及各元件取下,依次放入手提零件箱

内。

注意不要用手触摸样品的透光面。

5样品及调制线圈内的磁光玻璃为易损件,人为损坏不在保修范

围内,使用时应加倍小心。

6

因为电

实验时应注意直流稳压电源和电磁铁不要靠近示波器,

源里的变压器或者电磁铁产生的磁场会影响电子枪,引起示波器的不稳定。

7用正交消光法测量样品费尔德常数时,必须注意加磁场后要求

保证样品在磁场中的位置不发生变化,否则光路改变会影响到测量结果。

8完成实验时,注意测量环境不要有大的振动,外界不要有大的

光源光强变化。

最好在暗室内完成相关实验。

5.16.5数据处理

1.电磁铁磁头中心磁场的测量

分别取磁头间隙为20cm和10cm,测出励磁电流I与中心磁场磁

感应强度B关系曲线,通过作图法分析线性范围,并求出B~I关系式。

2.正交消光法测量法拉第效应实验

测量法拉第旋光玻璃的费尔德常数V并计算不确定度。

3.磁光调制实验

记录调制波形,根据磁光调制原理分析原因。

4.磁光调制倍频法测量法拉第效应实验(选做)

倍频法测量偏转角和中心磁场磁感应强度之间关系曲线,计算冕

玻璃的费尔德常数。

5.16.6思考题

①电磁铁的剩磁现象会对实验数据记录带来一定程度的影响,

问实验过程中用何方法能够消除剩磁现象?

②光电检测器前面有一个可调光阑,实验时可以调节合适的通光

孔,通光孔的大小调节有何意义?

3正交消光法测量法拉第效应实验中采用的是旋光玻璃样品,

果费尔德常数较小的样品,则相同磁场下的偏转角的是变大还是减小?

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 人文社科 > 法律资料

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2