高考复习讲解专题之不等式.doc

上传人:wj 文档编号:4571548 上传时间:2023-05-07 格式:DOC 页数:30 大小:1.46MB
下载 相关 举报
高考复习讲解专题之不等式.doc_第1页
第1页 / 共30页
高考复习讲解专题之不等式.doc_第2页
第2页 / 共30页
高考复习讲解专题之不等式.doc_第3页
第3页 / 共30页
高考复习讲解专题之不等式.doc_第4页
第4页 / 共30页
高考复习讲解专题之不等式.doc_第5页
第5页 / 共30页
高考复习讲解专题之不等式.doc_第6页
第6页 / 共30页
高考复习讲解专题之不等式.doc_第7页
第7页 / 共30页
高考复习讲解专题之不等式.doc_第8页
第8页 / 共30页
高考复习讲解专题之不等式.doc_第9页
第9页 / 共30页
高考复习讲解专题之不等式.doc_第10页
第10页 / 共30页
高考复习讲解专题之不等式.doc_第11页
第11页 / 共30页
高考复习讲解专题之不等式.doc_第12页
第12页 / 共30页
高考复习讲解专题之不等式.doc_第13页
第13页 / 共30页
高考复习讲解专题之不等式.doc_第14页
第14页 / 共30页
高考复习讲解专题之不等式.doc_第15页
第15页 / 共30页
高考复习讲解专题之不等式.doc_第16页
第16页 / 共30页
高考复习讲解专题之不等式.doc_第17页
第17页 / 共30页
高考复习讲解专题之不等式.doc_第18页
第18页 / 共30页
高考复习讲解专题之不等式.doc_第19页
第19页 / 共30页
高考复习讲解专题之不等式.doc_第20页
第20页 / 共30页
亲,该文档总共30页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

高考复习讲解专题之不等式.doc

《高考复习讲解专题之不等式.doc》由会员分享,可在线阅读,更多相关《高考复习讲解专题之不等式.doc(30页珍藏版)》请在冰点文库上搜索。

高考复习讲解专题之不等式.doc

选校网高考频道专业大全历年分数线上万张大学图片大学视频院校库

第七编不等式

§7.1不等关系与不等式

1.已知-1<a<0,那么-a,-a3,a2的大小关系是.

答案-a>a2>-a3

2.若m<0,n>0且m+n<0,则-n,-m,m,n的大小关系是.

答案m<-n<n<-m

3.已知a<0,-1<b<0,那么a,ab,ab2的大小关系是.

答案ab>ab2>a

4.设a=2-,b=-2,c=5-2,则a,b,c的大小关系为.

答案a<b<c

5.设甲:

m、n满足乙:

m、n满足那么甲是乙的条件.

答案必要不充分

例1

(1)设x<y<0,试比较(x2+y2)(x-y)与(x2-y2)(x+y)的大小;

(2)已知a,b,c∈{正实数},且a2+b2=c2,当n∈N,n>2时比较cn与an+bn的大小.

(1)方法一(x2+y2)(x-y)-(x2-y2)(x+y)

=(x-y)[x2+y2-(x+y)2]=-2xy(x-y),

∵x<y<0,∴xy>0,x-y<0,

∴-2xy(x-y)>0,

∴(x2+y2)(x-y)>(x2-y2)(x+y).

方法二∵x<y<0,∴x-y<0,x2>y2,x+y<0.

∴(x2+y2)(x-y)<0,(x2-y2)(x+y)<0,

∴0<=<1,

∴(x2+y2)(x-y)>(x2-y2)(x+y).

(2)∵a,b,c∈{正实数},∴an,bn,cn>0,

而=+.

∵a2+b2=c2,则+=1,

∴0<<1,0<<1.

∵n∈N,n>2,

∴<,<,

∴=+<=1,

∴an+bn<cn.

例2已知a、b、c是任意的实数,且a>b,则下列不等式恒成立的是.

①(a+c)4>(b+c)4②ac2>bc2

③lg|b+c|<lg|a+c|④(a+c)>(b+c)

答案④

例3(14分)已知-1<a+b<3且2<a-b<4,求2a+3b的取值范围.

解设2a+3b=m(a+b)+n(a-b),

∴,4分

∴m=,n=-.6分

∴2a+3b=(a+b)-(a-b).7分

∵-1<a+b<3,2<a-b<4,

∴-<(a+b)<,-2<-(a-b)<-1,10分

∴-<(a+b)-(a-b)<,12分

即-<2a+3b<.14分

1.

(1)比较x6+1与x4+x2的大小,其中x∈R;

(2)设a∈R,且a≠0,试比较a与的大小.

(1)(x6+1)-(x4+x2)

=x6-x4-x2+1=x4(x2-1)-(x2-1)

=(x2-1)(x4-1)=(x2-1)(x2-1)(x2+1)

=(x2-1)2(x2+1).

当x=±1时,x6+1=x4+x2;

当x≠±1时,x6+1>x4+x2.

(2)a-==

当-1<a<0或a>1时,a>;

当a<-1或0<a<1时,a<;

当a=±1时,a=.

2.适当增加不等式条件使下列命题成立:

(1)若a>b,则ac≤bc;

(2)若ac2>bc2,则a2>b2;

(3)若a>b,则lg(a+1)>lg(b+1);

(4)若a>b,c>d,则>;

(5)若a>b,则<.

(1)原命题改为:

若a>b且c≤0,则ac≤bc,即增加条件“c≤0”.

(2)由ac2>bc2可得a>b,但只有b≥0时,才有a2>b2,即增加条件“b≥0”.

(3)由a>b可得a+1>b+1,但作为真数,应有b+1>0,故应加条件“b>-1”.

(4)>成立的条件有多种,如a>b>0,c>d>0,因此可增加条件“b>0,d>0”.还可增加条件为“a<0,c>0,d<0”.

(5)<成立的条件是a>b,ab>0或a<0,b>0,

故增加条件为“ab>0”.

3.设f(x)=ax2+bx,1≤f(-1)≤2,2≤f

(1)≤4,求f(-2)的取值范围.

解方法一设f(-2)=mf(-1)+nf

(1)(m,n为待定系数),

则4a-2b=m(a-b)+n(a+b),

即4a-2b=(m+n)a+(n-m)b,

于是得,解得,

∴f(-2)=3f(-1)+f

(1).

又∵1≤f(-1)≤2,2≤f

(1)≤4,

∴5≤3f(-1)+f

(1)≤10,

故5≤f(-2)≤10.

方法二由,

得,

∴f(-2)=4a-2b=3f(-1)+f

(1).

又∵1≤f(-1)≤2,2≤f

(1)≤4,

∴5≤3f(-1)+f

(1)≤10,故5≤f(-2)≤10.

方法三由确定的平面区域如图.

当f(-2)=4a-2b过点A时,

取得最小值4×-2×=5,

当f(-2)=4a-2b过点B(3,1)时,

取得最大值4×3-2×1=10,

∴5≤f(-2)≤10.

一、填空题

1.已知a,b,c满足c<b<a且ac<0,则下列不等式中恒成立的是(填序号).

①>②>0③>④<0

答案①②④

2.(2009·姜堰中学高三第四次综合练习)已知存在实数a满足ab2>a>ab,则实数b的取值范围为.

答案(-∞,-1)

3.(2009·苏、锡、常、镇三检)已知三个不等式:

ab>0,bc-ad>0,->0(其中a,b,c,d均为实数),用其中两个不等式作为条件,余下的一个不等式作为结论组成一个命题,可组成的正确命题的个数为个.

答案3

4.已知函数f(x)=log2(x+1),设a>b>c>0,则,,的大小关系为.

答案<<

5.若x>y>1,且0<a<1,则①ax<ay;②logax>logay;③x-a>y-a;④logxa<logya.

其中不成立的有个.

答案3

6.已知a+b>0,则+与+的大小关系是.

答案+≥+

7.给出下列四个命题:

①若a>b>0,则>;

②若a>b>0,则a->b-;

③若a>b>0,则>;

④设a,b是互不相等的正数,则|a-b|+≥2.

其中正确命题的序号是.(把你认为正确命题的序号都填上)

答案②

二、解答题

8.比较aabb与abba(a,b为不相等的正数)的大小.

解=aa-bbb-a=,

当a>b>0时,>1,a-b>0,∴>1;

当0<a<b时,<1,a-b<0,∴>1.

综上所述,总有aabb>abba.

9.已知奇函数f(x)在区间(-∞,+∞)上是单调递减函数,,,∈R且+>0,+>0,+>0.

试说明f()+f()+f()的值与0的关系.

解由+>0,得>-.

∵f(x)在R上是单调减函数,∴f()<f(-).

又∵f(x)为奇函数,∴f()<-f(),∴f()+f()<0,

同理f()+f()<0,f()+f()<0,

∴f()+f()+f()<0.

10.某个电脑用户计划使用不超过1000元的资金购买单价分别为80元、90元的单片软件和盒装磁盘.根据需要,软件至少买3片,磁盘至少买4盒,写出满足上述所有不等关系的不等式.

解设买软件x片、磁盘y盒,

N+

N+

则x、y满足关系:

.

11.已知a>0,a2-2ab+c2=0,bc>a2.试比较a,b,c的大小.

解∵bc>a2>0,∴b,c同号.

又a2+c2>0,a>0,∴b=>0,∴c>0,

由(a-c)2=2ab-2ac=2a(b-c)≥0,∴b-c≥0.

当b-c>0,即b>c时,

由得·c>a2

即(a-c)(2a2+ac+c2)<0.

∵a>0,b>0,c>0,∴2a2+ac+c2>0,

∴a-c<0,即a<c,则a<c<b;

当b-c=0,即b=c时,

∵bc>a2,∴b2>a2,即b≠a.

又∵a2-2ab+c2=(a-b)2=0a=b与a≠b矛盾,

∴b-c≠0.

综上可知:

a<c<b.

§7.2一元二次不等式及其解法

1.下列结论正确的是.

①不等式x2≥4的解集为{x|x≥±2}

②不等式x2-9<0的解集为{x|x<3}

③不等式(x-1)2<2的解集为{x|1-<x<1+}

④设x1,x2为ax2+bx+c=0的两个实根,且x1<x2,则不等式ax2+bx+c<0的解集为{x|x1<x<x2}

答案③

2.(2007·湖南理)不等式≤0的解集是.

答案(-1,2]

3.(2008·天津理)已知函数f(x)=则不等式x+(x+1)·f(x+1)≤1的解集是.

答案{x|x≤-1}

4.在R上定义运算:

xy=x(1-y).若不等式(x-a)(x+a)<1对任意实数x成立,则a的取值范围是.

答案-<a<

5.(2008·江苏,4)A={x|(x-1)2<3x-7},则A∩Z的元素的个数为.

答案0

例1解不等式≥(x2-9)-3x.

解原不等式可化为-x2+≥x2--3x,

即2x2-3x-7≤0.

解方程2x2-3x-7=0,得x=.

所以原不等式的解集为

.

例2已知不等式ax2+bx+c>0的解集为(,),且0<<,求不等式cx2+bx+a<0的解集.

解方法一由已知不等式的解集为(,)可得a<0,

∵,为方程ax2+bx+c=0的两根,

∴由根与系数的关系可得

∵a<0,∴由②得c<0,

则cx2+bx+a<0可化为x2++>0,

①÷②得==-<0,

由②得==·>0,

∴、为方程x2+x+=0的两根.

∵0<<,

∴不等式cx2+bx+a<0的解集为

.

方法二由已知不等式解集为(,),得a<0,

且,是ax2+bx+c=0的两根,

∴+=-,=,

∴cx2+bx+a<0x2+x+1>0

()x2-(+)x+1>0(x-1)(x-1)>0

>0.

∵0<<,∴>,∴x<或x>,

∴cx2+bx+a<0的解集为.

例3已知不等式>0(a∈R).

(1)解这个关于x的不等式;

(2)若x=-a时不等式成立,求a的取值范围.

(1)原不等式等价于(ax-1)(x+1)>0.

①当a=0时,由-(x+1)>0,得x<-1;

②当a>0时,不等式化为(x+1)>0,

解得x<-1或x>;

③当a<0时,不等式化为(x+1)<0;

若<-1,即-1<a<0,则<x<-1;

若=-1,即a=-1,则不等式解集为空集;

若>-1,即a<-1,则-1<x<.

综上所述,

a<-1时,解集为;

a=-1时,原不等式无解;

-1<a<0时,解集为;

a=0时,解集为{x|x<-1};

a>0时,解集为.

(2)∵x=-a时不等式成立,

∴>0,即-a+1<0,

∴a>1,即a的取值范围为a>1.

例4(14分)已知f(x)=x2-2ax+2,当x∈[-1,+∞)时,f(x)≥a恒成立,求a的取值范围.

解方法一f(x)=(x-a)2+2-a2,

此二次函数图象的对称轴为x=a,2分

①当a∈(-∞,-1)时,结合图象知,f(x)在[-1,+∞)上单调递增,f(x)min=f(-1)=2a+3,4分

要使f(x)≥a恒成立,只需f(x)min≥a,

即2a+3≥a,解得a≥-3,又a<-1,∴-3≤a<-1;6分

②当a∈[-1,+∞)时,f(x)min=f(a)=2-a2,8分

由2-a2≥a,解得-2≤a≤1,又a≥-1,

∴-1≤a≤1.12分

综上所述,所求a的取值范围为-3≤a≤1.14分

方法二由已知得x2-2ax+2-a≥0在[-1,+∞)上恒成立,4分

即Δ=4a2-4(2-a)≤0或,10分

解得-3≤a≤1.14分

1.解下列不等式:

(1)-x2+2x->0;

(2)9x2-6x+1≥0.

(1)-x2+2x->0

x2-2x+<0

3x2-6x+2<0

Δ=12>0,且方程3x2-6x+2=0的两根为

x1=1-,x2=1+,

∴原不等式解集为.

(2)9x2-6x+1≥0(3x-1)2≥0.

∴x∈R,∴不等式解集为R.

2.已知关于x的不等式(a+b)x+(2a-3b)<0的解集为,求关于x的不等式(a-3b)x+(b-2a)>0的解集.

解∵(a+b)x+(2a-3b)<0的解集是,

于是a=2b>0,b>0,不等式(a-3b)x+(b-2a)>0,

即为-bx-3b>0,亦即-bx>3b,∴x<-3.

故所求不等式的解集为{x|x<-3}.

3.解关于x的不等式<0(a∈R).

解<0(x-a)(x-a2)<0,

①当a=0或a=1时,原不等式的解集为;

②当a<0或a>1时,a<a2,此时a<x<a2;

③当0<a<1时,a>a2,此时a2<x<a.

综上,当a<0或a>1时,原不等式的解集为{x|a<x<a2};

当0<a<1时,原不等式的解集为{x|a2<x<a};

当a=0或a=1时,原不等式的解集为.

4.函数f(x)=x2+ax+3.

(1)当x∈R时,f(x)≥a恒成立,求a的取值范围.

(2)当x∈[-2,2]时,f(x)≥a恒成立,求a的取值范围.

(1)∵x∈R时,有x2+ax+3-a≥0恒成立,

须Δ=a2-4(3-a)≤0,即a2+4a-12≤0,所以-6≤a≤2.

(2)当x∈[-2,2]时,设g(x)=x2+ax+3-a≥0,分如下三种情况讨论(如图所示):

①如图

(1),当g(x)的图象恒在x轴上方时,满足条件时,有Δ=a2-4(3-a)≤0,即-6≤a≤2.

②如图

(2),g(x)的图象与x轴有交点,

但在x∈[-2,+∞)时,g(x)≥0,

解之得a∈.

③如图(3),g(x)的图象与x轴有交点,

但在x∈(-∞,2]时,g(x)≥0,

-7≤a≤-6

综合①②③得a∈[-7,2].

一、填空题

1.函数y=的定义域是.

答案[-,-1)∪(1,]

2.不等式>0的解集是.

答案(-2,1)∪(2,+∞)

3.若(m+1)x2-(m-1)x+3(m-1)<0对任何实数x恒成立,则实数m的取值范围是.

答案m<-

4.若关于x的不等式:

x2-ax-6a<0有解且解区间长不超过5个单位,则a的取值范围是.

答案-25≤a<-24或0<a≤1

5.(2009·启东质检)已知函数f(x)的定义域为(-∞,+∞),

f′(x)为f(x)的导函数,函数y=f′(x)的图象如右图所示,

且f(-2)=1,f(3)=1,则不等式f(x2-6)>1的解集为.

答案(2,3)∪(-3,-2)

6.不等式组的解集为.

答案{x|0<x<1}

7.若不等式2x>x2+a对于任意的x∈[-2,3]恒成立,则实数a的取值范围为.

答案(-∞,-8)

8.已知{x|ax2-ax+1<0}=,则实数a的取值范围为.

答案0≤a≤4

二、解答题

9.解关于x的不等式56x2+ax-a2<0.

解原不等式可化为(7x+a)(8x-a)<0,

即<0.

①当-<,即a>0时,-<x<;

②当-=,即a=0时,原不等式解集为;

③当->,即a<0时,<x<-.

综上知:

当a>0时,原不等式的解集为

;

当a=0时,原不等式的解集为;

当a<0时,原不等式的解集为.

10.已知x2+px+q<0的解集为,求不等式qx2+px+1>0的解集.

解∵x2+px+q<0的解集为,

∴-,是方程x2+px+q=0的两实数根,

由根与系数的关系得,∴,

∴不等式qx2+px+1>0可化为-,

即x2-x-6<0,∴-2<x<3,

∴不等式qx2+px+1>0的解集为{x|-2<x<3}.

11.若不等式2x-1>m(x2-1)对满足|m|≤2的所有m都成立,求x的取值范围.

解方法一原不等式化为(x2-1)m-(2x-1)<0.

令f(m)=(x2-1)m-(2x-1)(-2≤m≤2).

解得<x<.

方法二求已知不等式视为关于m的不等式,

(1)若x2-1=0,即x=±1时,不等式变为2x-1>0,即x>,∴x=1,此时原不等式恒成立.

(2)当x2-1>0时,使>m对一切|m|≤2恒成立的充要条件是>2,

∴1<x<.

(3)当x2-1<0时,使<m对一切|m|≤2恒成立的充要条件是<-2.

∴<x<1.

(1)

(2)(3)知原不等式的解集为.

12.已知函数f(x)=ax2+a2x+2b-a3,当x∈(-2,6)时,其值为正,而当x∈(-∞,-2)∪(6,+∞)时,其值为负.

(1)求实数a,b的值及函数f(x)的表达式;

(2)设F(x)=-f(x)+4(k+1)x+2(6k-1),问k取何值时,函数F(x)的值恒为负值?

(1)由题意可知-2和6是方程f(x)=0的两根,

∴,∴,

∴f(x)=-4x2+16x+48.

(2)F(x)=-(-4x2+16x+48)+4(k+1)x+2(6k-1)

=kx2+4x-2.

当k=0时,F(x)=4x-2不恒为负值;

当k≠0时,若F(x)的值恒为负值,

则有,解得k<-2.

§7.3二元一次不等式(组)与简单的线性规划问题

1.已知点A(1,-1),B(5,-3),C(4,-5),则表示△ABC的边界及其内部的约束条件是.

答案

2.(2008·天津理,2)设变量x,y满足约束条件则目标函数z=5x+y的最大值为.

答案5

3.若点(1,3)和(-4,-2)在直线2x+y+m=0的两侧,则m的取值范围是.

答案-5<m<10

4.(2008·北京理)若实数x,y满足则z=3x+2y的最小值是.

答案1

5.(2008·福建理)若实数x、y满足,则的取值范围是.

答案(1,+∞)

例1画出不等式组表示的平面区域,并回答下列问题:

(1)指出x,y的取值范围;

(2)平面区域内有多少个整点?

(1)不等式x-y+5≥0表示直线x-y+5=0上及

右下方的点的集合.x+y≥0表示直线x+y=0上及

右上方的点的集合,x≤3表示直线x=3上及左方

的点的集合.

所以,不等式组

表示的平面区域如图所示.

结合图中可行域得x∈,y∈[-3,8].

Z

(2)由图形及不等式组知

当x=3时,-3≤y≤8,有12个整点;

当x=2时,-2≤y≤7,有10个整点;

当x=1时,-1≤y≤6,有8个整点;

当x=0时,0≤y≤5,有6个整点;

当x=-1时,1≤y≤4,有4个整点;

当x=-2时,2≤y≤3,有2个整点;

∴平面区域内的整点共有

2+4+6+8+10+12=42(个).

例2(2008·湖南理,3)已知变量x、y满足条件则x+y的最大值是.

答案6

例3(14分)某工厂生产甲、乙两种产品,计划每天每种产品的生产量不少于15吨,已知生产甲产品1吨,需煤9吨,电力4千瓦时,劳力3个;生产乙产品1吨,需煤4吨,电力5千瓦时,劳力10个;甲产品每吨的利润为7万元,乙产品每吨的利润为12万元;但每天用煤不超过300吨,电力不超过200千瓦时,劳力只有300个.问每天生产甲、乙两种产品各多少吨,才能使利润总额达到最大?

解设每天生产甲、乙两种产品分别为x吨、y吨,利润总额为z万元,1分

则线性约束条件为,4分

目标函数为z=7x+12y,8分

作出可行域如图,10分

作出一组平行直线7x+12y=t,当直线经过直线4x+5y=200和直线3x+10y=300的交点A(20,24)时,

利润最大.12分

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 幼儿教育 > 幼儿读物

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2