微分中值定理及应用毕业论文文档格式.doc

上传人:wj 文档编号:6872863 上传时间:2023-05-07 格式:DOC 页数:18 大小:1.08MB
下载 相关 举报
微分中值定理及应用毕业论文文档格式.doc_第1页
第1页 / 共18页
微分中值定理及应用毕业论文文档格式.doc_第2页
第2页 / 共18页
微分中值定理及应用毕业论文文档格式.doc_第3页
第3页 / 共18页
微分中值定理及应用毕业论文文档格式.doc_第4页
第4页 / 共18页
微分中值定理及应用毕业论文文档格式.doc_第5页
第5页 / 共18页
微分中值定理及应用毕业论文文档格式.doc_第6页
第6页 / 共18页
微分中值定理及应用毕业论文文档格式.doc_第7页
第7页 / 共18页
微分中值定理及应用毕业论文文档格式.doc_第8页
第8页 / 共18页
微分中值定理及应用毕业论文文档格式.doc_第9页
第9页 / 共18页
微分中值定理及应用毕业论文文档格式.doc_第10页
第10页 / 共18页
微分中值定理及应用毕业论文文档格式.doc_第11页
第11页 / 共18页
微分中值定理及应用毕业论文文档格式.doc_第12页
第12页 / 共18页
微分中值定理及应用毕业论文文档格式.doc_第13页
第13页 / 共18页
微分中值定理及应用毕业论文文档格式.doc_第14页
第14页 / 共18页
微分中值定理及应用毕业论文文档格式.doc_第15页
第15页 / 共18页
微分中值定理及应用毕业论文文档格式.doc_第16页
第16页 / 共18页
微分中值定理及应用毕业论文文档格式.doc_第17页
第17页 / 共18页
微分中值定理及应用毕业论文文档格式.doc_第18页
第18页 / 共18页
亲,该文档总共18页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

微分中值定理及应用毕业论文文档格式.doc

《微分中值定理及应用毕业论文文档格式.doc》由会员分享,可在线阅读,更多相关《微分中值定理及应用毕业论文文档格式.doc(18页珍藏版)》请在冰点文库上搜索。

微分中值定理及应用毕业论文文档格式.doc

        导师签名:

       日期:

秦国华

(安阳师范学院数学与统计学院,河南安阳455002)

摘要:

微分中值定理不仅是微分学的基本定理,而且它是微分学的理论核心.本文主要介绍微分中值定理在等式的证明、不等式的证明、方程根的存在性以及求近似值等中的应用.

关键词:

等式证明;

不等式证明;

方程根存在性;

近似值

1引言

微分中值定理是微分学的基本定理,在数学分析中有重要的地位,在微积分教学与研究中具有承前启后的作用,是研究函数在某个区间内的整体性质的有力工具.本文是以罗尔中值定理、拉格朗日中值定理和柯西中值定理三个定理为研究对象,主要介绍微分中值定理的若干推广和应用.

2预备知识

由于微分中值定理与连续函数紧密相关,因此有必要介绍一些闭区间上连续函数的性质、定理.

定理2.1(最大、最小值定理)若函数在闭区间上连续,则在上有最大值与最小值.

定理2.2(费马定理)设函数在点的某领域内有定义,且在点可导.若点为的极值点,则必有.

定理2.3(有界性定理)若函数在闭区间上连续,则在上有界.即$常数,使得"

Î

有.

定理2.4(介值性定理)设函数在闭区间上连续,且.若为介于与之间的任意实数(或),则至少存在一点,使得.

定理2.5(根的存在定理)若函数在闭区间上连续,且与异号(即).则至少存在一点使,即方程在开区间内至少有一个根.

定理2.6(一致连续性定理)若函数在闭区间上连续,则在闭区间上一致连续.

3微分中值定理的定义

定理3.1(罗尔()中值定理)若函数满足如下条件:

(i)在闭区间上连续;

(ii)在开区间内可导;

(iii),

则在内至少存在一点,使得.

定理3.2(拉格朗日()中值定理)若函数满足如下条件:

(ii)在开区间内可导,

则在内至少存在一点,使得

定理3.3(柯西()中值定理)设函数和满足

(i)在闭区间上都连续;

(ii)在开区间内都可导;

(iii)和不同时为零;

(iv),

则存在,使得

4微分中值定理的证明

4.1罗尔中值定理的证明

根据条件在闭区间上连续和闭区间上连续函数的最大值和最小值定理,若函数在闭区间上连续,则函数在闭区间上能取到最小值和最大值,即在闭区间上存在两点和,使

.

且对任意,有.下面分两种情况讨论:

(1)如果,则在上是常数,所以对,有.即内任意一点都可以作为,使.

(2)如果,由条件,在上两个端点与的函数值与,不可能同时一个取最大值一个取最小值,即在开区间内必定至少存在一点,函数在点取最大值或最小值,所以在点必取局部极值,由费马定理,有.

4.2拉格朗日中值定理证明

证法一:

构造函数法

构造辅助函数,其中.

根据已知条件和连续函数的性质,我们可以知道在闭区间上是连续的,在开区间内是可导的,并且还有,所以我们可以根据罗尔定理就可以得到函数在内至少存在一点,使得

证法二:

行列式法

构造辅助函数,则

由此可得在闭区间上连续.

由此可得在开区间内也可导.

又由,.

可得

综上所述,可知满足罗尔中值定理的条件,则至少存在一点.

使得

4.3柯西中值定理的证明

根据提舍得已知条件和连续函数的性质,我们可以知道函数在闭区间上是连续的,在开区间内是可导的,而且还有,所以我们根据定理就可以知道在内一定存在一点,可以使得

故证得

构造辅助函数.

.

由此可得在闭区间上连续.

由此可得在开区间内可导.

由,.

综上所述:

满足罗尔定理的条件,则至少存在一点,

5微分中值定理的几何解释

5.1罗尔中值定理的几何解释

y

A

B

P

在每一点都可导的一段连续曲线上,如果曲线的两端点高度相等,则至少存在一条水平切线(图5-1).

y=f(x)

y=F(x)+f(a)

y=x

a

b-a

f(b)-f(a)

b

x

O

图5-2

图5-1

5.2拉格朗日中值定理的几何解释

在满足定理条件的曲线上至少存在一点,该曲线在该点处的切线平行于曲线两端点的连续(图5-2).

5.3柯西中值定理的几何解释

C(g(),f())

在曲线(其中为参数,)存在一点,使曲线过该点的切线平行于过曲线两端点的弦(图5-3).

B(g(b),f(b))

a

A(g(),f())

图5-3

综上所述,这三个中值定理归纳起来,用几何解释为:

在区间上连续且除端点外每一点都存在不垂直于轴的切线的曲线,它们有个共同的特征在曲线上至少存在一点,过该点的切线平行于曲线端点的连线.

6微分中值定理之间的关系

从这三个定理的内容不难看出它们之间具有一定的关系.利用推广和收缩的观点来看这三个定理.在拉格朗日中值定理中,如果,则变成罗尔中值定理,在柯西中值定理中,如果,则变成拉格朗日中值定理.因此,拉格朗日中值定理是罗尔中值定理的推广,柯西中值定理是拉格朗日中值定理的推广.反之,拉格朗日中值定理是柯西中值定理的特例,罗尔中值定理是拉格朗日中值定理的特例.总的来说,这三个定理既单独存在,相互之间又存在着联系.从上面的讨论中可以总结得到,罗尔中值定理是这一块内容的基石,而拉格朗日中值定理则是这一块内容的核心,柯西中值定理则是这一块内容的推广应用.

7微分中值定理的应用

三个定理的应用主要有讨论方程根的存在性、等式证明、不等式证明、求近似值等.以下主要以例题的形式分别展示三个定理的应用.

7.1罗尔中值定理的应用

罗尔定理是解决中值问题的主要工具,应用罗尔定理的具体步骤可归纳如下:

(1)将要证中值公式写成适应的形式:

(2)构作辅助函数,使得等式恰相当于.通常,将看作的函数求其原函数,就得出所需的,当这样行不通时,可试着用适当的因子乘.

(3)验证或(,这通常是容易的,且一般在构作时已考虑到了.

例7.1设则存在,使得

证明变换待证中值公式为:

设,则.

又,,得

从而满足罗尔定理的三个条件,则

例7.2设函数在上连续,在内可导,且.

试证:

在内至少存在一点,使得.

证明选取辅助函数,则在上连续,在内可导,,由定理,至少存在一点,使

因为

所以

或.

例7.3设且满足,

证明:

方程在内至少有一个实根.

证明作辅助函数

则,,在上连续,在内可导,故满足罗尔中值定理条件,因此存在,使

由此即知原方程在内有一个实根.

例7.4设函数于有穷或无穷区间中的任意一点有有限的导函数,且,证明:

其中为区间中的某点.

证明当为有穷区间时,设

其中.

显然在上连续,在内可导,且有,故由定理可知,在内至少存在一点,使.而在内,,所以.下设为无穷区间,若,可设,则对由函数与组成的复合函数在有穷区间内仿前讨论可知:

至少存在一点,使,其中,由于,故.若为有限数,,则可取,而令.所以,对复合函数在有穷区间上仿前讨论,可知存在使,其中,显然由于,故.对于,为有限数的情形,可类似地进行讨论.

7.2拉格朗日定理的应用

拉格朗日定理比罗尔定理的应用更广泛,因为它对函数的要求更低.应用拉格朗日中值定理与应用罗尔定理证明命题的方法与技巧基本相同,只是变化更加丰富.

例7.5设在上连续,在内可导;

且.证明:

使得.

证明变换待证公式为:

设,则可对应用拉格朗日中值定理,则存在,使得

,.

设,可对应用拉格朗日中值定理,则存在,使得

例7.6设为上二阶可导函数,(a)=(b)=0,并存在使得(c)>

0,试证:

至少存在一点使得<

0.

证明因为在上二阶可导,则可知在、上均二阶可导,由中值定理得

存在使得>

存在使得<

而在,同样推得

<

例7.7证明时,.

证明设,则在上满足中值定理

又因为

所以

例7.8求的近似值.

解是在处的值,令,则,由中值定理,存在一点,有

可取近似计算,得

例7.9设函数在区间上连续,并且时,其中m为常数,又f(a)<

0,,试证方程=0在区间内有唯一的实根。

证明由题设可知对函数在上可应用Lagrange中值定理,则

因而

又,由连续函数介值性定理知,存在使得,

.

故在上严格单调递增,从而=0在内有唯一的实根.

7.3柯西中值定理的应用

由于涉及两个函数的问题,柯西中值定理的应用要比罗尔中值定理与拉格朗日中值定理的应用要复杂,特别要注意的是,在一个命题中如何分离出两个恰当的函数,使函数既满足柯西定理的条件,又使命题的证明或计算简单易行.柯西中值定理经常要与其他定理一起使用.所以分析问题时要注意层次.

若待证中值公式明显地可表示为,则很可能就是,因而可应用柯西定理.

例7.10设,证明:

存在,使得

证明变换待证中值公式为:

进而有

从而有

令.对、应用柯西定理,可知必存在,使得

成立.

例7.11设函数在上连续,在上可导.试证:

存在使得

证明设,显然它在上与一起满足柯西中值定理条件,所以存在,使得

整理后即得

例7.12设,对的情况,求证.

证明当时结论显然成立,当时,取或,在该区间设

由定理得:

或.

当时

.

当时,

例7.13设在上连续,内可导,,,

试证,使得.

证明在等式两边同乘,则等价于

要证明此题,只需要证明上式即可.

在上,取,,当时,

用中值定理得

在上,再取,,当时,

9总结

微分中值定理是微分学的基本定理,而且它是微分学的理论核心,有着广泛的应用.本文主要是对微分中值定理等式的证明、不等式的证明、方程根的存在性以及求近似值等的应用.应用微分中值定理证明命题的关键是构造辅助函数,构造满足某个微分中值定理的条件而得到要证明的结论.

参考文献

[1]华东师范大学数学系编.数学分析[M].北京:

高等教育出版社第三版,2001.

[2]同济大学应用数学系.高等数学[M].北京:

高等教育出版社,2003.

[3]党艳霞.浅谈微分中值定理及其应用[J].廊坊师范学院学报,2010.

[4]欧阳光中,朱学炎.复旦大学数学系.数学分析第三版上册[M].北京:

高等教育出版社,2007.

[5]刘章辉.微分中值定理及其应用[J].山西大同大学学报(自然科学版),2007.

[6]杨耕文.用行列式法证明微分中值定理[J].洛阳大学学报,2006.

[7]高等数学复习及习题选讲[M].北京工业大学出版社,2005.

[8]陈纪修,徐惠平,周渊,金路,邱维元.数学分析选讲指南(上册)[M].北京:

高等教育出版社,2006.

[9]孙清华,孙昊.数学分析疑难分析与解题方法(上)[M].中国·

武汉:

华中科技大学出版社,2006.

[10]张则增,周相泉等.微分中值定理的推广[J].山东师大学报,1998.

Differentialmeanvaluetheoremanditsapplications

QinGuohua

(Schoolofmathematicsandstatistics,AnyangNormalUniversity,Anyang,455002)

Abstract:

Differentialmeanvaluetheoremisnotonlythebasictheoremofdifferentialcalculus,butalsothecoretheoryofdifferentialcalculus.Thisthesismainlyintroducesthedifferentialmeanvaluetheoremoftheequation,inequalityproof,theexistenceoftheequationroot,andapplicationforapproximationandsoon.

Keywords:

Equation;

Inequalityproof;

Iquationrootofexistence;

Approximation

第16页

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 幼儿教育 > 幼儿读物

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2