正余弦定理综合应用.docx

上传人:b****6 文档编号:15513876 上传时间:2023-07-05 格式:DOCX 页数:15 大小:118.07KB
下载 相关 举报
正余弦定理综合应用.docx_第1页
第1页 / 共15页
正余弦定理综合应用.docx_第2页
第2页 / 共15页
正余弦定理综合应用.docx_第3页
第3页 / 共15页
正余弦定理综合应用.docx_第4页
第4页 / 共15页
正余弦定理综合应用.docx_第5页
第5页 / 共15页
正余弦定理综合应用.docx_第6页
第6页 / 共15页
正余弦定理综合应用.docx_第7页
第7页 / 共15页
正余弦定理综合应用.docx_第8页
第8页 / 共15页
正余弦定理综合应用.docx_第9页
第9页 / 共15页
正余弦定理综合应用.docx_第10页
第10页 / 共15页
正余弦定理综合应用.docx_第11页
第11页 / 共15页
正余弦定理综合应用.docx_第12页
第12页 / 共15页
正余弦定理综合应用.docx_第13页
第13页 / 共15页
正余弦定理综合应用.docx_第14页
第14页 / 共15页
正余弦定理综合应用.docx_第15页
第15页 / 共15页
亲,该文档总共15页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

正余弦定理综合应用.docx

《正余弦定理综合应用.docx》由会员分享,可在线阅读,更多相关《正余弦定理综合应用.docx(15页珍藏版)》请在冰点文库上搜索。

正余弦定理综合应用.docx

正余弦定理综合应用

正余弦定理综合应用

学校:

姓_名:

班_级:

考_号:

一、解答题

1.已知的内切圆面积为,角所对的边分别为,若

1)求角;

2)当的值最小时,求的面积.

2.设的内角,,所对的边分别为,,,且

(1)求的值;

,求的值;

3)若,求面积的最大值

 

1)求;

2)若,求

4.已知向量,,角,,为的内角,其所对的边分别为,,.

1)当取得最大值时,求角的大小;

2)在

(1)成立的条件下,当时,求的取值范围

5.在△ABC中,角A,B,C所对的边分别为a,b,c,且.

(1)判断△ABC的形状;

(2)若,求的取值范围.

6

.如图:

在中,,点在线段上,且

 

Ⅱ)若,求△DBC的面积最大值.

7.在中,角的对边分别为,

(1)求角的大小;

2)若的外接圆直径为2,求的取值范围

8.在锐角三角形中,角所对的边分别为,已知

(1)求角的大小;

(2)求的取值范围。

42

9.设函数fxcos2x2cos2x.

3

(1)求fx的最大值,并写出使fx取最大值时x的集合;

3

(2)已知ABC中,角A,B,C的边分别为a,b,c,若fBC2,bc2,求a的最小值.

210.在ABC中,角A,B,C所对的边分别为a,b,c,且ACB3.

3

(1)若a,b,c依次成等差数列,且公差为2,求c的值;

(2)若c3,ABC,试用表示ABC的周长,并求周长的最大值

参考答案

1.

(1);

(2)

解析】分析:

(1)由正弦定理将边化角得,进而得;

2)由内切圆的性质得,由余弦定理得,进而得

化简得

,或,又,所

以,从而得当时,的最小值为6,进而得面积.

详解:

(1)由正弦定理得

∴.

(2)

由余弦定理得,

由题意可知的内切圆半径为1,

如图,设圆为三角形的内切圆,为切点,

可得,

则,

于是

化简得

 

 

 

所以或,

又,所以,即,当且仅当时,的最小值为6,

此时三角形的面积

属于中档题

点睛:

本题主要考察了正余弦定理的灵活应用及三角形内切圆的性质

2.

(1)

2)(3)

解析】分析:

(1)由

利用

,,

式化简可得,从而可得结果;

(2)直接利用正弦定理可得结果;

利用基本不等式可得

式可得,从而可得结果

正弦定理得:

利用两角和的正弦公

(3)由余弦定理,

,,由三角形面积公

详解:

(1)中,

由正弦定理得:

 

 

 

(3)由

(1)知

由余弦定理得:

当且仅当时取“=”号)

即面积的最大值为

.解答

点睛:

以三角形为载体,三角恒等变换为手段,正弦定理、余弦定理为工具,对三角函数及解三角形进行考查是近几年高考考查的一类热点问题,一般难度不大,但综合性较强

这类问题,两角和与差的正余弦公式、诱导公式以及二倍角公一定要熟练掌握并灵活应用,

特别是二倍角公式的各种变化形式要熟记于心

3.

(1);

(2).

【解析】分析:

(1)由正弦定理即可;

详解:

(1)在中,

由正弦定理得

(2)

又∵,

在中

∴.

点睛:

本题主要考查了正弦定理、余弦定理在解三角形中的应用,考查了计算能力和转化思想,属于中档题.

4.

(1)

(2)

【解析】分析:

(1)由两向量的坐标,利用平面向量的数量积运算列出关系式,利用诱导公

式及二倍角的余弦函数公式化简,整理后得到关于的二次函数,由的范围求出的范围,利用正弦函数的图象与性质得出此时的范围,利用二次函数的性质即可求出

取得最大值时的度数;

2)由及的值,利用正弦定理表示出,再利用三角形的内角和定理用表示出,将表示出的代入中,利用二倍角的余弦函数公式化简,整理后利用两角和与差的

正弦函数公式化为一个角的正弦函数,由的范围求出这个角的范围,利用正弦函数的图

详解:

1)

,令

于是

所以的范围是.

点睛:

本题考查正弦定理,平面向量的数量积运算,正弦函数的定义域与性质,以及三角函数的恒等变形,熟练掌握正弦定理是解本题的关键.

5.

(1)△ABC为的直角三角形.

(2)

【解析】分析:

(1)由已知条件结合正弦定理对已知化简可求得角的值,进而可判断三

角形的形状;

(2)由辅助角公式对已知函数先化简,然后代入可求得,结合

(1)中的角求得角的范围,然后结合正弦函数的性质,即可求解.

详解:

(Ⅰ)因为,

由正弦定理可得.

即,所以因为在△ABC中,,所以又,所以,.所以△ABC为的直角三角形.

Ⅱ)因为

所以.因为△ABC是的直角三角形,

所以,且,所以当时,有最小值是

所以的取值范围是点睛:

本题主要考查了利用正弦定理和三角函数的恒等变换求解三角形问题,对于解三角形

问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用余

弦定理借助三边关系求角,利用两角和差公式及二倍角公式求三角函数值.利用正、余弦定理解三角形问题是高考高频考点,经常利用三角形内角和定理,三角形面积公式,结合正、余弦定理解题.

6.

(1)3

(2)

【解析】分析:

(1)根据题中的条件,结合余弦定理,可求得,设,

由余弦定理可得:

,应用余弦定理,写出的值,根据两角互补,得到

,得到所满足的等量关系式,求得结果;

(2)利用同角三角函数关系式的平方关系求得,根据余弦定理以及重要不等

式得到,利用三角形面积公式求得结果.

详解:

(Ⅰ)∵

在中,设,由余弦定理可得:

在和中,由余弦定理可得:

又因为

∴得②

由①②得∴.

当且仅当取等号)由,可得

∴的面积最大值为.点睛:

该题考查的是有关解三角形的问题,在解题的过程中,涉及到的知识点有余弦定理,正弦定理,同角三角函数平方关系,基本不等式求最值,三角形面积公式,诱导公式等,正确使用公式是解题的关键.

7.

(1).

(2).

【解析】分析:

(1)根据三角函数和差公式化简,得到角A、B、C的关系,以及A+B+C=π

即可求出角C。

(2)设,利用正弦定理和外接圆直径为2,建立边和角的对应关系;再利用降幂公式,把A、

B化成α的表达式;利用角α的取值范围即可求出的取值范围。

详解:

(1)由得

,则,即

,即.

2)由,设

故的取值范围是.

点睛:

本题综合考查了三角函数和差公式、正弦定理、降幂公式的综合应用,结合知识点多,化简较为复杂,属于难题。

在三角函数问题中,边角转化是解决问题的核心,解题前要确认把角转化成边,还是把边转化成角。

8.

(1);

(2)

【解析】试题分析:

(1)由正弦定理转化为关于边的条件,再由余弦定理,求角即可;

,由正弦定理得

(2)利用二倍角公式化简,得到正弦型三角函数,分析角的取值范围,即可求出三角函数的取值范围.

试题解析:

(1)因为

,即,

根据余弦定理得

又因为,所以

2)因为,所以

因为三角形为锐角三角形且,所以

所以

所以

即的取值范围为

点睛:

解决三角形中的角边问题时,要根据条件选择正余弦定理,将问题转化统一为边的问题或角的问题,利用三角中两角和差等公式处理,特别注意内角和定理的运用,涉及三角形面积最值问题时,注意均值不等式的利用,特别求角的时候,要注意分析角的范围,才能写出角的大小.

9.

(1)2,{x|xk,kZ};

(2)1.

6

【解析】试题分析:

(1)先利用两角差的余弦公式和二倍角公式将fx化为

2)由

(1)

,再利用三角函数的性质求其最值及取得最值时自变量的集合;

以及角A的范围解得角A,再利用余弦定理和基本不等式进行求解.

1)

题解析

fx的最大值为2.

要使fx取最大值,cos2x1,2x2kkZ,33

故x的集合为{x|xk,kZ}

6

3

,即cos2

1

fBC

cos2BC

1

2A

32

3

2

2)

化简得cos

2A

3

QA

0,

2A

3

在ABC

中,由余弦定理,

由b

c

2知bcb

2

考点:

1.

三角恒等变换;

10.(

1)

c7

(2)2

2

c

a2b2

5

3,3

1,即

,只有

2A

3,A3

c22bccos

3

2

bc3bc.

1,当bc

1时a取最小值

1.,

2.三角函数的图象与性质;

3.余弦定理;

4.基本不等式.

解析】试题分析:

(1)由等差数列定义可得

ac4,bc2

再根据余弦定理得

方程

,解方程可得c的值;

(2)先根据正弦定理用表示

表示边AC2sin,BC2sin3

,再利用两角差正弦公式及配角公式将周长函数转

化为基本三角函数2sin

33,最后根据

范围及正弦函数性质求最大值

试题解析:

(1)Qa,b,c成等差数列,且公差为2,ac4,bc2,

QBCA3

cosC

222

1,a2b2c21,c4c2c2

2,2ab2,

等变形得

c29c140,

解得c7或c2,又Qc4,c7.

(2)

ABC

AC

sinABC

BC

sinBAC

AB

sinACB

AC

sin

BC

sin

3

sin22

sin

3

 

AC2sin,BC2sin

3

ABC

ACBCAB2sin

2sin

3

21sin

3cos

2

32sin

3,又Q

0,3,

 

 

当32即6时,f取得最大值23.

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 经管营销 > 经济市场

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2