微分几何梅向明黄敬之编第二章课后题答案.docx

上传人:b****6 文档编号:8879353 上传时间:2023-05-15 格式:DOCX 页数:16 大小:196.56KB
下载 相关 举报
微分几何梅向明黄敬之编第二章课后题答案.docx_第1页
第1页 / 共16页
微分几何梅向明黄敬之编第二章课后题答案.docx_第2页
第2页 / 共16页
微分几何梅向明黄敬之编第二章课后题答案.docx_第3页
第3页 / 共16页
微分几何梅向明黄敬之编第二章课后题答案.docx_第4页
第4页 / 共16页
微分几何梅向明黄敬之编第二章课后题答案.docx_第5页
第5页 / 共16页
微分几何梅向明黄敬之编第二章课后题答案.docx_第6页
第6页 / 共16页
微分几何梅向明黄敬之编第二章课后题答案.docx_第7页
第7页 / 共16页
微分几何梅向明黄敬之编第二章课后题答案.docx_第8页
第8页 / 共16页
微分几何梅向明黄敬之编第二章课后题答案.docx_第9页
第9页 / 共16页
微分几何梅向明黄敬之编第二章课后题答案.docx_第10页
第10页 / 共16页
微分几何梅向明黄敬之编第二章课后题答案.docx_第11页
第11页 / 共16页
微分几何梅向明黄敬之编第二章课后题答案.docx_第12页
第12页 / 共16页
微分几何梅向明黄敬之编第二章课后题答案.docx_第13页
第13页 / 共16页
微分几何梅向明黄敬之编第二章课后题答案.docx_第14页
第14页 / 共16页
微分几何梅向明黄敬之编第二章课后题答案.docx_第15页
第15页 / 共16页
微分几何梅向明黄敬之编第二章课后题答案.docx_第16页
第16页 / 共16页
亲,该文档总共16页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

微分几何梅向明黄敬之编第二章课后题答案.docx

《微分几何梅向明黄敬之编第二章课后题答案.docx》由会员分享,可在线阅读,更多相关《微分几何梅向明黄敬之编第二章课后题答案.docx(16页珍藏版)》请在冰点文库上搜索。

微分几何梅向明黄敬之编第二章课后题答案.docx

微分几何梅向明黄敬之编第二章课后题答案

第二章曲面论

§1曲面的概念

1.求正螺面7={ucosv,usinv,bv}的坐标曲线.

解u-曲线为r={ucosvo,usinvo,bvo}={0,0,bv°}+u{cosvo,sinv°,0},为曲线的直母线;v-曲线为?

={uocosv,Uosinv,bv}为圆柱螺线.

2.证明双曲抛物面r={a(u+v),b(u-v),2uv}的坐标曲线就是它的直母线。

证u-曲线为r={a(u+vo),b(u-vo),2uvo}={av°,bv°,0}+u{a,b,2vo}表示过点{av°,bv°,0}

以{a,b,2vo}为方向向量的直线;

v-曲线为r={a(uo+v),b(uo-v),2uov}={au°,buo,0}+v{a,-b,2uo}表示过点(auo,buo,0)

以{a,-b,2uo}为方向向量的直线

3.求球面r={acos;:

sin,acos'sin:

asin;:

}上任意点的切平面和法线方程。

解r、={—asin、:

cos;—asin;sin「,acos:

},r.:

={—acos;sin:

acosLcos,0}

 

即xcos:

cos+ycos:

sin+zsin二-a=0

法线方程为

x-acos、:

cos:

_y-acos:

sin:

_z-asin二cos、:

cos:

cos、:

sin'sin二

22

4.求椭圆柱面务•岭=1在任意点的切平面方程,并证明沿每一条直母线,此曲面只有一个切平面

ab

rt工{0,0,1}。

所以切平面方程为:

此方程与t无关,对于二的每一确定的值,确定唯一一个切平面,而二的每一数值对应一条直母线,说明沿每一条直母线,此曲面只有一个切平面。

3

5•证明曲面r={u,v,—}的切平面和三个坐标平面所构成的四面体的体积是常数

UV

§2曲面的第一基本形式

1.求双曲抛物面r={a(u+v),b(u-v),2uv}的第一基本形式解ru={a,b,2v},g二{a,-b,2u},E=打=a2b24v2,

F=rurv=a2-b24uv,G=rv2二a2b24u2,

1=(a2b24v2)du22(a2-b24uv)dudv(a2b24u2)dv2。

2.求正螺面r={ucosv,usinv,bv}的第一基本形式,并证明坐标曲线互相垂直

2'■"222

解ru={cosv,sinv,0},rv二{—usinv,ucosv,b},E=1,Frv=0,G=rv=ub,二I

=du2(u2b2)dv2,:

F=0,.・.坐标曲线互相垂直。

3.在第一基本形式为I=du2■sinh2udv2的曲面上,求方程为u=v的曲线的弧长。

解由条件ds?

二du2•sinh2udv2,沿曲线u=v有du=dv,将其代入ds2得

ds2二du2sinh2udv2=cosh2vdv2,ds=coshvdv,在曲线u=v上,从v1至Uv2的弧长为

V2

|vcos\hdvisin^-sintij。

4.设曲面的第一基本形式为I=du2(u2a2)dv2,求它上面两条曲线u+v=0,u-v=0的交角。

分析由于曲面上曲线的交角是曲线的内蕴量,即等距不变量,而求等距不变量只须知道曲面的第一基

本形式,不需知道曲线的方程。

解由曲面的第一基本形式知曲面的第一类基本量E=1,Fv=0,G=u2,a2,曲线u+v=0与u-v=0的交点为u=0,v=0,交点处的第一类基本量为E=1,Fv=0,G=a2。

曲线u+v=0的方向为du=-dv,u-v=0的方向为Su=Sv,设两曲线的夹角为「,则有

2

巾Edu6u+Gdv6u1-a

cos^―

jEdu2+Gdv2jE6u2+G和21+a

5.求曲面z=axy上坐标曲线x=x°,y=y的交角.

解曲面的向量表示为7={x,y,axy},坐标曲线x=x0的向量表示为r={x0,y,ax0y},其切向量

ry={0,1,ax。

};坐标曲线y=y°的向量表示为r={x,y°,axy。

},其切向量rx={1,0,ay。

},设两曲线

2

x=x0与y=yo的夹角为®,则有cos®=、3:

22

|rx||ry|E+a2x2、;1+a2y:

6.求u-曲线和v-曲线的正交轨线的方程.

解对于u-曲线dv=0,设其正交轨线的方向为Su:

Sv,则有

EduSu+F(duSv+dvSu)+GdvSv=0,将dv=0代入并消去du得u-曲线的正交轨线的微分方程为ESu+FSv=0.

同理可得v-曲线的正交轨线的微分方程为FSu+GSv=0.

7.在曲面上一点,含du,dv的二次方程Pdu2+2Qdudv+Rdv2=0,确定两个切方向(du:

dv)和(Su:

Sv),证明这两个方向垂直的充要条件是ER-2FQ+GP=0.

证明因为du,dv不同时为零,假定dv=0,则所给二次方程可写成为P(虫)2+2Q屯+R=0,设其

dvdv

二根理,巴则巴巴=R,巴+兰=_竺……①又根据二方向垂直的条件知E典三+F(竺+已)+Gdv、vdv、vPdv、vPdv、vdv:

v

=0……②

将①代入②则得ER-2FQ+GP=0.

8.证明曲面的坐标曲线的二等分角线的微分方程为Edu2=Gdv2.

证用分别用3、厂、d表示沿u—曲线,V—曲线及其二等分角线的微分符号,即沿u—曲线SU-

0,3v=0,沿v—曲线"u=0,”v=0.沿二等分角轨线方向为du:

dv,根据题设条件,又交角公式

(Edu创+Fdv^u)2(FduSj+Gdv6*v)2冃口(Edu+Fdv)2(Fdu+Gdv)2

E、u2ds2一G、v2ds2,E一G。

展开并化简得E(EG-F2)du2=G(EG-F2)dv2,而EG-F2>0,消去EG-F2得坐标曲线的二等分角线的微分方

程为Edu2=Gdv2.

9.设曲面的第一基本形式为I=曲面上三条曲线u=—av,v=1相交所成的三角

解三曲线在平面上的图形(如图)所示。

曲是

01a1

S=u2a2dudv亠I一u2a2dudv

-au0u

aa

a1a

=2,u2a2dudv=2(1-»).u2a2du

0u0a

a

3

=[2(u2a2)2u.u2a2a2ln(u.u2a2)]$3a

22-2—

=a2[In(1、2)]o

3

10.求球面r={acos二sin,,acos二sin:

asin「:

}的面积。

解r:

={_asin、:

cos,_asin:

sin:

acos:

},r:

={_acos、:

sin:

acos:

cos:

0}

E=r?

=a2,F=心心=0,G=r$=a2cos2*.球面的面积为:

it2兀,n匹

S=2_.di!

-;a4cos2;:

d=2”:

a22…cos、d:

=2二a2sin、:

|2…=4:

a2.ToP

11.证明螺面r={ucosv,usinv,u+v}和旋转曲面7={tcos「:

tsin二,..,t2_1}

(t>1,0<二<2二)之间可建立等距映射二=arctgu+v,t=,u21.

分析根据等距对应的充分条件,要证以上两曲面可建立等距映射二=arctgu+v,t=,u21,可在一个曲面譬如在旋转曲面上作一参数变换使两曲面在对应点有相同的参数,然后证明在新的参数下,两曲面

具有相同的第一基本形式.

旋转曲面的第一基本形式为

证明螺面的第一基本形式为1=2du2+2dudv+(u2+1)dv2

匸(1、七)dt2在旋转曲面上作一参数变换=arctgu+v,t=u21,则其第一基本形式

为:

u121222222

=(21)durdu2dudv(u1)dv=2du+2dudv+(u+1)dv=I.

u1u

所以螺面和旋转曲面之间可建立等距映射二=arctgu+v,t=u21.

§3曲面的第二基本形式

1.计算悬链面r={coshucosv,coshusinv,u}的第一基本形式,第二基本形式.

解ru={sinhucosv,sinhusinv,1},rv={-coshusinv,coshucosv,0}

ruu={coshucosv,coshusinv,0},ruv={-sinhusinv,sinhucosv,0},

rw={-coshucosv,-coshusinv,0},E=ru2=cosh2u,F二rurv=0,Grv2=cosh2u.

所以I=cosh2udu2+cosh2udv2.

所以II=-du2+dv2

2.计算抛物面在原点的2x3=5x14x1x22x;第一基本形式,第二基本形式.

解曲面的向量表示为r={x1,x2,—x2-2x1x2x;},

2

L珂1,O,5X12x2}©。

)={1,0,0},L二{0,1,2x12x2}(o,。

)-{0,1,0},g={0,0,5},

rx1x2={0,0,2},J?

={0,0,2},E=1,F=0,G=1丄=5,M=2,N=2,

2222

I=dx-idx2,11=5dx14dx1dx22dx2.

3.证明对于正螺面r={ucosv,usinv,bv},-s

解ru={cosv,sinv,0},rv={-usinv,ucosv,b},ruu={0,0,0},

ruV={-uucosv,cosv,0},rw={-ucosv,-usinv,0},E二g=1,F二4g=0,G二g二ub,L=0,

M=一-b一,N=0.所以有EN-2FM+GL=0.

u2b2

1

4.求出抛物面z=—(ax2,by2)在(0,0)点沿方向(dx:

dy)的法曲率.

2

解J={1,0,ax}(0,0)={1,0,0},ry二{0,1,by}(0,0)={0,1,0},很-{0,0,a},5={0,0,0}

5.已知平面-到单位球面(S)的中心距离为d(0

解设平面二与(S)的交线为(C),则(C)的半径为-d2,即(C)的曲率为

k=「2,又(C)的主法向量与球面的法向量的夹角的余弦等于士Ji-d2,所以(C)的法曲率为..1-d2

心=k.1—d2二二1.

6.利用法曲率公式kn=¥,证明在球面上对于任何曲纹坐标第一、第二类基本量成比例

证明因为在球面上任一点处,沿任意方向的法截线为球面的大圆,其曲率为球面半径R的倒数1/R

即在球面上,对于任何曲纹坐标(u,v),沿任意方向du:

dv

 

7•求证在正螺面上有一族渐近线是直线,另一族是螺旋线。

证明对于正螺面r={ucosv,usinv,bv},

ru={cosv,sinv,0},={-usinv,ucosv,b},ruu={0,0,0},rw={-ucosv,-usinv,0},

L=(ru,rv,ruu\=q,N=(;u」v,rw\=0.所以u族曲线和v族曲线都是渐近线。

而u族曲线是直线,v族曲线、EG-F2EG-F2

是螺旋线。

8.求曲面z=xy2的渐近线.

解曲面的向量表示为r={x,y,xy2},rx{1,0,y2},ry二{0,1,2xy},q={0,0,0},

___22_222

rxy二{0,0,2y},q二{0,0,2x},E%14y,^rxry=2xy,G=ry^14xy.

渐近线的微分方程为Ldx22MdxdyNdy2,即4ydxdy•2xdy2=0,—族为dy=0,即丫^“,“为常数.另一族为2ydx=-xdy,即lnx2y=c2,或x2y=c,c为常数..

9.证明每一条曲线在它的主法线曲面上是渐近线.

证在每一条曲线(C)的主法线曲面上,沿(C)的切平面是由(C)的切向量与(C)的主法向量所确定的平面与曲线(C)的密切平面重合,所以每一条曲线(C)在它的主法线曲面上是渐近线.

方法二:

任取曲线:

:

r=r(s),它的主法线曲面为s:

「T(s,t)=r(s)t:

(S),

?

s2--y(1一r

2=:

"(s)-t扌(s)=:

•t(-:

•)=(1-t')ET,?

t=

在曲线:

上,t=0,?

sJJ曲面的单位法向量瞎-st「,即n=",所以曲线丨在它的主

JEG-F2

法线曲面上是渐近线•

10.证明在曲面z=f(x)+g(y)上曲线族x=常数,y=常数构成共轭网.

证曲面的向量表示为r={x,y,f(x)+g(y)},x=常数,y=常数是两族坐标曲线。

rx<1,0,f'},ry{0,1,g'}.乙二{0,0,f"},己二{0,0,0},I二{0,0,g"},

因为M=乙ry-0,所以坐标曲线构成共轭网,即曲线族x=常数,y=常数构成共轭网

JEG-F2

11.确定螺旋面7={ucosv,usinv,bv}上的曲率线.

解ru={cosv,sinv,0},rv={_usinv,ucosv,b},ruu={0,0,0},rvv={-ucosv,-usinv,0}

rUv={-sinv,cosv,0},E=「2=1,F=仃吒=0,G=r7=u2+b2,L=0,M=_b—,N=0,曲率线的微

.u2b2

分方程为:

 

v二In(uu2b2)c1ftv=ln(.u2b2-u)c2.

12.

求双曲面z=axy上的曲率线.

2222222

E=1ay,F二axy,G=1ax丄=0,M

In(ax.1

a2x2)=ln(ay_.f1a2y2)c・

13.求曲面r={a(u-v),E(uv),uv}上的曲率线的方程•

222

2222.2222

解e,bv芾「abuv,G=abu丄“4

ab

M=2——,N=0•代入曲率线的微分方程得所求曲率线的方程是

.EG-F2

(a2b2u2)dv2=(a2b2v2)du2,积分得:

ln(u.a2b2u2)-_ln(va2b2v2)c.

14.给出曲面上一曲率线L,设L上每一点处的副法线和曲面在该点的法向量成定角,求证L是一平面曲

线•

证法一:

因L是曲率线,所以沿L有dn--ndr,又沿L有?

n=常数,求微商

得n-n=0,而n〃dn//dr与正交,所以n=0,即-•:

•n=0,则有.=0,或:

•n=0.

若.=0,则L是平面曲线;若:

•n=0,L又是曲面的渐近线,则沿Ln=0,这时dn=0,n为

常向量,而当L是渐近线时,=_n,所以为常向量,L是一平面曲线.

证法二:

若_n,则因n_drII,所以nIM,所以dnII',由伏雷

内公式知dn11(-'厂•:

)而l是曲率线,所以沿L有dnI『,所以有•=0,从而曲线为平面曲线;

若不垂直于n,则有?

n=常数,求微商得T^0,因为L是曲率线,所

以沿L有dnIId;_,所以2=0,所以,n=0,即-.:

•n=0,若.=0,则问题得证;否则:

•n=0,

则因席,=0,有nII,dnIId*||(-.1)||:

,矛盾

15.如果一曲面的曲率线的密切平面与切平面成定角,则它是平面曲线。

证曲线的密切平面与曲面的切平面成定角,即曲线的副法向量和曲面的法向量成定角,由上题结论知正确。

16.求正螺面的主曲率。

解设正螺面的向量表示为r={ucosv,usinv,bv}.

解ru二{cosv,sinv,0},rv={_usinv,ucosv,b},ruu={0,0,0},

aa.a*QQQ

rw={-ucosv,-usinv,0},治={-sinv,cosv,0},e=g=1,F=mrv=0,G=ub,L=0,M

占,N=。

,代入主曲率公式

17.确定抛物面z=a(x2y2)在(0,0)点的主曲率.

解曲面方程即L={0,0,龙};={x,y,a(x2y2)},〔二{1,0,2ax}r^{0,1,2ay},〔二{0,0,2a},rXy二{0,0,0},ryy二{0,0,2a}。

在(0,0)点,E=1,F=0,G=1,L=2a,M=0,

N=2a.所以'N-4^N+4a2=0,两主曲率分别为■■-1=2a,■■-2=2a.

18.证明在曲面上的给定点处,沿互相垂直的方向的法曲率之和为常数.

证曲面上的给定点处两主曲率分别为-、■2,任给一方向二及与其正交的方向二+二2,则这两方向

的法曲率分别为■■-nCJ-■'■'icos^Ssin2;:

'nC:

'2^cos2^->2^2sin2(‘:

~2^sin2':

'2cos2:

,即

■nC:

)亠5(「辻:

2)="亠S为常数。

19.证明若曲面两族渐近线交于定角,则主曲率之比为常数

证由\=“cos2亠匕sin2二得tg2:

=-二,即渐进方向为若为双曲点,则曲面上存在渐近曲线网•由19题,渐近方向二满足tg・-_.T=1,

20.求证正螺面的平均曲率为零.

证由第3题或第16题可知.

21.求双曲面z=axy在点x=y=0的平均曲率和高斯曲率

2

K=LN-m=a2

K=2—a

EG—F2

22.证明极小曲面上的点都是双曲点或平点

K+k

证法一:

由H」2=0有*='••2=0或打二'•2

2

若'■-1=-―=0,则K='“’2<0,即LN-M2<0,对应的点为双曲点

证法二:

取曲率网为坐标网,则F=M=0,因为极小曲面有H=0,

所以LG+EN=0,因E>0,G>0,所以LN<0。

若LN-M2=0,贝UL=M=N=0,曲面上的点是

平点,若LN-M2<0,则曲面上的点是双曲点。

23.证明如果曲面的平均曲率为零,则渐近线构成正交网.

证法一:

如果曲面的平均曲率为零,由上题曲面上的点都是双曲点或平点

若为平点,则任意方向为渐近方向,任一曲线为渐近曲线,必存在正交的渐近曲线网

瓷2

即;:

1=二/4,「:

2二二/4,两渐近线的夹角为■-2,即渐近曲线网构成正交网•

证法二:

H=0LG-2FMNE=0渐近线方程为Ldu22MdudvNdv2=0

d2udud、uuN2duuM

所以L

(2)翎2•N,所以,,所以

dvdvd6vv6LdvvL

duuduux…

Edu、uF(duvdv、u)Gdv、v=dv、v[EF()G]

dv6vdv6v

=dv、:

v[EN-F(-2・G]=0,所以渐近网为正交网。

LL

证法三:

M=0;H•一)=0,所以高斯曲率;《7亍2岂0,所以LN-M2^0,所以曲面

2

上的点是平点或双曲点。

所以曲面上存在两族渐近线。

取曲面上的两族渐近线为坐标网,则L=N=0,

若M=0,曲面上的点是平点,若

M-0,贝U?

H=0LG-2FMN^0,所以MF=0,所以F=0,所以渐近网为正交网。

24.在xoz平面上去圆周y=0,(x-b)2,z2=a2(b'a),并令其绕轴旋转的圆环面,参数方程为

r={(b+acos「)cos;:

(b+acos「)sin二,asin「},求圆环面上的椭圆点、双曲点、抛物点。

22

解E=a,F=0,G=(bacosJ,L=a,M=0,N=cos「(b+acosJ

LN-M2=acos「(b+acos「),由于b>a>0,b+acos「>0,所以LN-M2的符号与cos「的符号一致,当

0<「v二2和tv「<2二时,LN-M2>0,曲面上的点为椭圆点,即圆环面外侧的点为椭圆点;当-二2<,<手,曲面上的点为双曲点,即圆环面内侧的点为双曲点;当,二2或号时,LN-M2=0,为抛物点,即圆环面上、下两纬圆上的点为抛物点。

25.若曲面的第一基本形式表示为I-2(u,v)(du2•dv2)的形式,则称这个曲面的坐标曲线为等温网。

试证:

旋转曲面r={g(t)cos:

g(t)sin、:

,f(t)}上存在等温网。

证旋转曲面r={g(t)cosL,g(t)sinf(t)}的第一基本形式为

'2*f'2'2*f'2

I二g2(t)(g厂dt2d:

2),做参数变换u二—gdt,v=:

则在新参数下,I=g2[t(u)](du2dv2),

gg

为等温网。

26.两个曲面Si、S2交于一条曲线(C),而且(C)是Si的一条曲率线,贝U(C)也是S2的一条曲

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 初中教育 > 语文

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2