教案第十三十四节.docx

上传人:b****4 文档编号:5940627 上传时间:2023-05-09 格式:DOCX 页数:16 大小:78.75KB
下载 相关 举报
教案第十三十四节.docx_第1页
第1页 / 共16页
教案第十三十四节.docx_第2页
第2页 / 共16页
教案第十三十四节.docx_第3页
第3页 / 共16页
教案第十三十四节.docx_第4页
第4页 / 共16页
教案第十三十四节.docx_第5页
第5页 / 共16页
教案第十三十四节.docx_第6页
第6页 / 共16页
教案第十三十四节.docx_第7页
第7页 / 共16页
教案第十三十四节.docx_第8页
第8页 / 共16页
教案第十三十四节.docx_第9页
第9页 / 共16页
教案第十三十四节.docx_第10页
第10页 / 共16页
教案第十三十四节.docx_第11页
第11页 / 共16页
教案第十三十四节.docx_第12页
第12页 / 共16页
教案第十三十四节.docx_第13页
第13页 / 共16页
教案第十三十四节.docx_第14页
第14页 / 共16页
教案第十三十四节.docx_第15页
第15页 / 共16页
教案第十三十四节.docx_第16页
第16页 / 共16页
亲,该文档总共16页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

教案第十三十四节.docx

《教案第十三十四节.docx》由会员分享,可在线阅读,更多相关《教案第十三十四节.docx(16页珍藏版)》请在冰点文库上搜索。

教案第十三十四节.docx

教案第十三十四节

1.6三角函数模型的简单应用

(一)

教学目的:

1.能正确分析收集到的数据,选择恰当的三角函数模型刻画数据所蕴含的规律.将实际问题抽象为三角函数有关的简单函数模型.

2.通过切身感受数学建模的全过程,体验数学在解决实际问题中的价值和作用,及数学与日常生活和其他学科的联系.认识数学知识在生产、生活实际中所发挥的作用.体会和感受数学思想的内涵及数学本质,逐步提高创新意识和实践能力.

3.通过函数拟合得到具体的函数模型,提高数学建模能力.并在探究中激发学生的学习兴趣,培养锲而不舍的钻研精神,培养学生勇于探索、勤于思考的科学精神.

教学重点与难点:

教学重点:

分析、整理、利用信息,从实际问题中抽取基本的数学关系来建立三角函数模型,用三角函数模型解决一些具有周期变化规律的实际问题.

教学难点:

将某些实际问题抽象为三角函数的模型,并调动相关学科的知识来解决问题.

教学手段与方法:

探究式教学法

教学过程:

导入新课

思路:

我们已经学习了三角函数的概念、图象与性质,特别研究了三角函数的周期性.在现实生活中,如果某种变化着的现象具有周期性,那么是否可以借助三角函数来描述呢?

回忆必修1第三章第二节“函数模型及其应用”,面临一个实际问题,应当如何选择恰当的函数模型来刻画它呢?

以下通过几个具体例子,来研究这种三角函数模型的简单应用.

新知探究

提出问题

①回忆从前所学,指数函数、对数函数以及幂函数的模型都是常用来描述现实世界中的哪些规律的?

②数学模型是什么,建立数学模型的方法是什么?

③上述的数学模型是怎样建立的?

④怎样处理搜集到的数据?

讨论结果:

①描述现实世界中不同增长规律的函数模型.

②简单地说,数学模型就是把实际问题用数学语言抽象概括,再从数学角度来反映或近似地反映实际问题时,所得出的关于实际问题的数学描述.数学模型的方法,是把实际问题加以抽象概括,建立相应的数学模型,利用这些模型来研究实际问题的一般数学方法.

③解决问题的一般程序是:

1°审题:

逐字逐句的阅读题意,审清楚题目条件、要求、理解数学关系;

2°建模:

分析题目变化趋势,选择适当函数模型;

3°求解:

对所建立的数学模型进行分析研究得到数学结论;

4°还原:

把数学结论还原为实际问题的解答.

④画出散点图,分析它的变化趋势,确定合适的函数模型.

应用示例

例1如图1,某地一天从6—14时的温度变化曲线近似满足函数y=sin(ωx+φ)+b.

图1

(1)求这一天的最大温差;

(2)写出这段曲线的函数解析式.

活动:

这道例题是2002年全国卷的一道高考题,探究时教师与学生一起讨论.

解:

(1)由图可知,这段时间的最大温差是20℃.

(2)从图中可以看出,从6—14时的图象是函数y=Asin(ωx+φ)+b的半个周期的图象,

∴A=

(30-10)=10,b=

(30+10)=20.

·

=14-6,

∴ω=

.将x=6,y=10代入上式,解得φ=

.

综上,所求解析式为y=10sin(

x+

)+20,x∈[6,14].

点评:

本例中所给出的一段图象实际上只取6—14即可,这恰好是半个周期,提醒学生注意抓关键.本例所求出的函数模型只能近似刻画这天某个时段的温度变化情况,因此应当特别注意自变量的变化范围,这点往往被学生忽略掉.

例2(2007全国高考)函数y=|sinx|的一个单调增区间是()

A.(

)B.(

)C.(π,

)D.(

2π)

答案:

C

例3如图2,设地球表面某地正午太阳高度角为θ,δ为此时太阳直射纬度,φ为该地的纬度值,那么这三个量之间的关系是θ=90°-|φ-δ|.当地夏半年δ取正值,冬半年δ取负值.

如果在北京地区(纬度数约为北纬40°)的一幢高为h0的楼房北面盖一新楼,要使新楼一层正午的太阳全年不被前面的楼房遮挡,两楼的距离不应小于多少?

分析:

首先由题意要知道太阳高度角的定义:

设地球表面某地纬度值为φ,正午太阳高度角为θ,此时太阳直射纬度为δ,那么这三个量之间的关系是θ=90°-|φ-δ|.当地夏半年δ取正值,冬半年δ取负值.

根据地理知识,能够被太阳直射到的地区为南、北回归线之间的地带,图形如图3,由画图易知

太阳高度角θ、楼高h0与此时楼房在地面的投影长h之间有如下关系:

h0=htanθ.

由地理知识知,在北京地区,太阳直射北回归线时物体的影子最短,直射南回归线时物体的影子最长.因此,为了使新楼一层正午的太阳全年不被遮挡,应当考虑太阳直射南回归线时的情况.

图3

解:

如图3,A、B、C分别为太阳直射北回归线、赤道、南回归线时楼顶在地面上的投影点.要使新楼一层正午的太阳全年不被前面的楼房遮挡,应取太阳直射南回归线的情况考虑,此时的太阳直射纬度-23°26′.依题意两楼的间距应不小于MC.

根据太阳高度角的定义,

有∠C=90°-|40°-(-23°26′)|=26°34′,

所以MC=

=

≈2.000h0,

即在盖楼时,为使后楼不被前楼遮挡,要留出相当于楼高两倍的间距.

点评:

本例是研究楼高与楼在地面的投影长的关系问题,是将实际问题直接抽象为与三角函数有关的简单函数模型,然后根据所得的函数模型解决问题.要直接根据图2来建立函数模型,学生会有一定困难,而解决这一困难的关键是联系相关知识,画出图3,然后由图形建立函数模型,问题得以求解.这道题的结论有一定的实际应用价值.教学中,教师可以在这道题的基础上再提出一些问题,如下例的变式训练,激发学生进一步探究.

变式训练

某市的纬度是北纬23°,小王想在某住宅小区买房,该小区的楼高7层,每层3米,楼与楼之间相距15米.要使所买楼层在一年四季正午太阳不被前面的楼房遮挡,他应选择哪几层的房?

图4

解:

如图4,由例3知,北楼被南楼遮挡的高度为

h=15tan[90°-(23°+23°26′)]=15tan43°34′≈14.26,

由于每层楼高为3米,根据以上数据,

所以他应选3层以上.

知能训练

课本本节练习1、2.

解答:

1.乙点的位置将移至它关于x轴的对称点处.

点评:

因为波从乙点传到戊点正好是一个周期,经过

周期,波正好从乙点传到丁点,又因为在波的传播过程中,绳上各点只是上下震动,纵坐标在变,横坐标不变,所以经过

周期,乙点位置将移至它关于x轴的对称点处,即横坐标不变,纵坐标与图中的丁点相同.

2.如CCTV—1新闻联播节目播出的周期是1天.

点评:

了解实际生活中发生的周期变化现象.

课堂小结

1.本节课我们学习了三个层次的三角函数模型的应用,即根据图象建立解析式,根据解析式作出图象,将实际问题抽象为与三角函数有关的简单函数模型.你能概括出建立三角函数模型解决实际问题的基本步骤吗?

2.实际问题的背景往往比较复杂,而且需要综合应用多学科的知识才能解决它.因此,在应用数学知识解决实际问题时,应当注意从复杂的背景中抽取基本的数学关系,还要调动相关学科知识来帮助理解问题.

作业

.图5表示的是电流I与时间t的函数关系

图5

I=Asin(ωx+φ)(ω>0,|φ|<

)在一个周期内的图象.

(1)根据图象写出I=Asin(ωx+φ)的解析式;

(2)为了使I=Asin(ωx+φ)中的t在任意一段

s的时间内电流I能同时取得最大值和最小值,

 

1.6三角函数模型的简单应用

(二)

教学目的:

1.能正确分析收集到的数据,选择恰当的三角函数模型刻画数据所蕴含的规律.将实际问题抽象为三角函数有关的简单函数模型.

2.通过切身感受数学建模的全过程,体验数学在解决实际问题中的价值和作用,及数学与日常生活和其他学科的联系.认识数学知识在生产、生活实际中所发挥的作用.体会和感受数学思想的内涵及数学本质,逐步提高创新意识和实践能力.

3.通过函数拟合得到具体的函数模型,提高数学建模能力.并在探究中激发学生的学习兴趣,培养锲而不舍的钻研精神,培养学生勇于探索、勤于思考的科学精神.

教学重点与难点:

教学重点:

分析、整理、利用信息,从实际问题中抽取基本的数学关系来建立三角函数模型,用三角函数模型解决一些具有周期变化规律的实际问题.

教学难点:

将某些实际问题抽象为三角函数的模型,并调动相关学科的知识来解决问题.

教学手段与方法:

启导式教学法

教学过程:

导入新课

思路.通过展示上节作业引入,学生搜集、归纳到的现实生活中的周期现象有:

物理情景的①简单和谐运动,②星体的环绕运动;地理情景的①气温变化规律,②月圆与月缺;心理、生理现象的①情绪的波动,②智力变化状况,③体力变化状况;日常生活现象的①涨潮与退潮,②股票变化等等.

新知探究

提出问题

①本章章头引言告诉我们,海水在月球和太阳引力作用下发生周期性涨落现象.回忆上节课的内容,怎样用上节课的方法从数学的角度来定量地解决这个问题呢?

在指数、对数模型中是怎样处理搜集到的数据的?

②请做下题(2007浙江高考)若函数f(x)=2sin(ωx+φ),x∈R(其中ω>0,|φ|<

)的最小正周期是π,且f(0)=

则()

A.ω=

φ=

B.ω=

φ=

C.ω=2,φ=

D.ω=2,φ=

讨论结果:

①略②D

应用示例

例1货船进出港时间问题:

海水受日月的引力,在一定的时候发生涨落的现象叫潮.一般地,早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近码头;卸货后,在落潮时返回海洋.下面是某港口在某季节每天的时间与水深关系表:

时刻

0:

00

3:

00

6:

00

9:

00

12:

00

15:

00

18:

00

21:

00

24:

00

水深/米

5.0

7.5

5.0

2.5

5.0

7.5

5.0

2.5

5.0

(1)选用一个函数来近似描述这个港口的水深与时间的函数关系,给出整点时的水深的近似数值(精确到0.001).

(2)一条货船的吃水深度(船底与水面的距离)为4米,安全条例规定至少要有1.5米的安全间隙(船底与洋底的距离),该船何时能进入港口?

在港口能呆多久?

(3)若某船的吃水深度为4米,安全间隙为1.5米,该船在2:

00开始卸货,吃水深度以每小时0.3米的速度减少,那么该船在什么时间必须停止卸货,将船驶向较深的水域?

解:

(1)以时间为横坐标,水深为纵坐标,在直角坐标系中画出散点图(图6).

根据图象,可以考虑用函数y=Asin(ωx+φ)+h刻画水深与时间之间的对应关系.从数据和图象可以得出:

A=2.5,h=5,T=12,φ=0,

由T=

=12,得ω=

.

所以这个港口的水深与时间的关系可用y=2.5sin

x+5近似描述.

由上述关系式易得港口在整点时水深的近似值:

时刻

0:

00

1:

00

2:

00

3:

00

4:

00

5:

00

6:

00

7:

00

8:

00

9:

00

10:

00

11:

00

水深

5.000

6.250

7.165

7.5

7.165

6.250

5.000

3.754

2.835

2.500

2.835

3.754

时刻

12:

00

13:

00

14:

00

15:

00

16:

00

17:

00

18:

00

19:

00

20:

00

21:

00

22:

00

23:

00

水深

5.000

6.250

7.165

7.5

7.165

6.250

5.000

3.754

2.835

2.500

2.835

3.754

(2)货船需要的安全水深为4+1.5=5.5(米),所以当y≥5.5时就可以进港.

令2.5sin

x+5=5.5,sin

x=0.2.

由计算器可得

MODE

MODE

2

SHIFT

sin-1

0.2

=

0.20135792≈0.2014.

如图,在区间[0,12]内,函数y=2.5sin

x+5的图象与直线y=5.5有两个交点A、B,

因此

x≈0.2014,或π-

x≈0.2014.

解得xA≈0.3848,xB≈5.6152.

由函数的周期性易得:

xC≈12+0.3848=12.3848,xD≈12+5.6152=17.6152.

因此,货船可以在0时30分左右进港,早晨5时30分左右出港;或在中午12时30分左右进港,下午17时30分左右出港.每次可以在港口停留5小时左右.

图8

(3)设在时刻x货船的安全水深为y,那么y=5.5-0.3(x-2)(x≥2).在同一坐标系内作出这两个函数的图象,可以看到在6—7时之间两个函数图象有一个交点(如图8).

通过计算也可以得到这个结果.在6时的水深约为5米,此时货船的安全水深约为4.3米;6.5时的水深约为4.2米,此时货船的安全水深约为4.1米;7时的水深约为3.8米,而货船的安全水深约为4米.因此为了安全,货船最好在6.5时之前停止卸货,将船驶向较深的水域.

点评:

本例是研究港口海水深度随时间呈周期性变化的问题,题目只给出了时间与水深的关系表,要想由此表直接得到函数模型是很困难的.对第

(2)问的解答,教师引导学生利用计算器进行计算求解.同时需要强调,建立数学模型解决实际问题,所得的模型是近似的,并且得到的解也是近似的.这就需要根据实际背景对问题的解进行具体的分析.如本例中,一天中有两个时间段可以进港,教师应引导学生根据问题的实际意义,对答案的合理性作出解释.

变式训练

发电厂发出的电是三相交流电,它的三根导线上的电流强度分别是时间t的函数,IA=Isinωt,IB=Isin(ωt+120°),IC=Isin(ωt+240°),则IA+IB+IC=________.

答案:

0

例2下图是一个单摆的振动图象,据图象回答下列问题:

(1)单摆振幅多大;

(2)振动频率多高;

(3)摆球速度首次具有最大负值的时刻和位置;

(4)摆球运动的加速度首次具有最大负值的时刻和位置;

(5)若当g=9.86m/s2J,求摆线长.

解:

结合函数模型和图象:

(1)单摆振幅是1cm;

(2)单摆的振动频率为1.25HZ;

(3)单摆在0.6s通过平衡位置时,首次具有速度的最大负值;

(4)单摆在0.4s时处正向最大位移处,首次具有加速度最大负值;

(5)由单摆振动的周期公式T=2π

可得L=

=0.16m.

点评:

解决实际问题的关键是要归纳出数学函数模型,然后按数学模型处理.同时要注意检验,使所求得的结论符合问题的实际意义.

变式训练

1.已知函数f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)为偶函数,且其图象上相邻的一个最高点和最低点之间的距离为

.

(1)求函数f(x)的解析式;

(2)若sinx+f(x)=

求sinxcosx的值.

解:

(1)∵f(x)为偶函数,

∴f(-x)=f(x),即sin(-ωx+φ)=sin(ωx+φ).

∴φ=

.

∴f(x)=sin(ωx+

)=cosωx.

相邻两点P(x0,1),Q(x0+

-1).

由题意,|PQ|=

=π2+4.解得ω=1.

∴f(x)=cosx.

(2)由sinx+f(x)=

得sinx+cosx=

.

两边平方,得sinxcosx=

.

2.小明在直角坐标系中,用1cm代表一个单位长度作出了一条正弦曲线的图象.若他将纵坐标改用2cm代表一个单位长度,横坐标不变,那么他所作的曲线的函数解析式是什么?

若他将横坐标改用2cm代表一个单位长度,而纵坐标不变,那么他所作的曲线的函数解析式又是什么?

解:

小明原作的曲线为y=sinx,x∈R,由于纵坐标改用了2cm代表一个单位长度,与原来1cm代表一个单位长度比较,单位长度增加到原来的2倍,所以原来的1cm只能代表

个单位长度了.由于横坐标没有改变,曲线形状没有变化,而原曲线图象的解析式变为y=

sinx,x∈R.同理,若纵坐标保持不变,横坐标改用2cm代表一个单位,则横坐标被压缩到原来的

原曲线周期就由2π变为π.故改变横坐标后,原曲线图象的解析式变为

y=sin2x,x∈R.

3.求方程lgx=sinx实根的个数.

解:

由方程式模型构建图象模型.

在同一坐标系内作出函数y=lgx和y=sinx的图象,如图.可知原方程的解的个数为3.

点评:

单解方程是很困难的,而根据方程式模型构建图象模型,利用数形结合来解就容易多了,教师要让学生熟练掌握这一方法.

知能训练

课本本节练习3

3.本题可让学生上网查一下,下载有关人体节律的软件,利用软件就能方便地作出自己某一时间段的三条人体节律曲线,它们都是正弦型函数图象,根据曲线不难回答题中的问题.让学生在课下总结一下自己在什么时候应当控制情绪,在什么时候应当鼓励自己;在什么时候应当加以锻炼,在什么时候应当保持体力,以利于学生的高效率学习.

点评:

通过解决可用三角函数模型描述的自身问题,让学生增强学习三角函数的兴趣,并进一步体会三角函数是描述周期性变化现象的重要模型,体会数学应用的广泛性.

课堂小结

1.让学生回顾本节课的数学模型都解决了哪些现实生活中的问题,用三角函数模型刻画周期变化规律对国家建设、制定未来计划,以及我们的学习、生活都发挥着什么样的作用.

2.三角函数应用题通常涉及生产、生活、军事、天文、地理和物理等实际问题,其解答流程大致是:

审读题意→设角建立三角式→进行三角变换→解决实际问题.在解决实际问题时,要学会具体问题具体分析,充分运用数形结合的思想,灵活的运用三角函数的图象和性质解决现实问题.

作业

如图,一滑雪运动员自h=50m高处A点滑至O点,由于运动员的技巧(不计阻力),在O点保持速率v0不变,并以倾角θ起跳,落至B点,令OB=L,试问,当α=30°时,L的最大值为多少?

当L取最大值时,θ为多大?

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 工程科技 > 能源化工

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2